
PHP. Уровень 3.
Профессиональная разработка
на PHP

http://igor-borisov.ru

Игорь Борисов

 PHP. Уровень 3 Стр.1

http://igor-borisov.ru

Объектно-ориентированное программирование

Практическое использование ООП с базой данных SQLite

PHP и XML

PHP и веб-службы

Сокеты и сетевые функции

Работа с графикой

Темы курса

 PHP. Уровень 3 Стр.2

Создание рабочего окружения

Задание 1: Создание виртуального хоста и запуск сервера

Откройте проводник Windows •

Перейдите в директорию C:\Пользователи\Общие\OpenServer
\domains\
(Внимание! В некоторых ситуациях русскоязычному пути C:
\Пользователи\Общие\ соответствует англоязычный путь C:\Users
\Public\. Это одно и тоже.)

•

В этой директории создайте папку mysite.local•

Запустите сервер. Для этого нажмите
[Пуск -> Open Server]
(На всякий случай, сама программа находится по пути
C:\Пользователи\Общие\OpenServer\Open Server.exe)

•

В правом нижнем углу (рядом с часами) кликните по иконке с
красным флажком

•

В открывшемся меню выберите первый пункт Запустить•

Дождитесь пока цвет иконки с флажком изменится с желтого на
зеленый

•

Если запуск закончился неудачей - флажок опять стал красным, то
кликните по иконке, выберите последний пункт Выход и повторите
последние 4 пункта

•

Задание 2: Копирование необходимых файлов

Получите у преподавателя архив с файлами для работы на курсе •

Распакуйте архив в созданную в предыдущем упражнении
директорию
C:\Пользователи\Общие\OpenServer\domains\mysite.local\

•

Запустите браузер и в адресной строке наберите: http://mysite.local/•

Вы должны увидеть главную страницу учебного сайта•

Подготовка рабочего места

 PHP. Уровень 3 Стр.3

http://mysite.local/

PHP. Уровень 3
Объектно-ориентированное
программирование

Модуль 1

 Модуль 1. ООП Стр.4

ООП и PHP

Классы и объекты

Свойства и методы объектов

Конструкторы и деструкторы

Клонирование объектов

Наследование классов

 Перегрузка методов
 Обработка исключений

Абстрактные классы и методы

Интерфейсы

 Константы класса
 Статические свойства и методы класса
 Автозагрузка классов
 Модификаторы доступа к свойствам и методам
 "Магические методы"

Финальные классы и методы

 Типажи
Уточнение типов

Полезные функции для классов и объектов

Темы модуля

 Модуль 1. ООП Стр.5

// Описание класса

// тело класса
class Pet{

}

// Создание объекта, экземпляра класса
$cat = new Pet();
$dog = new Pet;

// Проверим
echo gettype($cat); // object
echo is_object($dog); // 1

Классы и объекты

 Модуль 1. ООП Стр.6

// Описание класса

// Описание свойств
public $type = "unknown";
public $name;

class Pet{

}

// Создание объектов, экземпляров класса
$cat = new Pet();
$cat = new Pet();

// Изменяем значения свойств
$cat->type = "cat";
$cat->name = "Murzik";

$dog->type = "dog";
$dog->name = "Tuzik";

// Проверим, какого типа $cat?
echo $cat->type; // cat
// Проверим, как зовут собачку?
echo $dog->name; // Tuzik

Свойства объектов

 Модуль 1. ООП Стр.7

// Описание класса

// Описание свойств
public $type = "unknown";
public $name;
// Описание методов
function say($word){
 echo "Оbject said $word";
}

class Pet{

}

// Создание объектов, экземпляров класса
$cat = new Pet();
$cat = new Pet();
// Изменяем значения свойств
$cat->type = "cat";
$cat->name = "Murzik";
$dog->type = "dog";
$dog->name = "Tuzik";

// Вызываем метод объекта
$cat->say("Myau"); // Object said Myau
$dog->say("Gav"); // Object said Gav

Методы объектов

 Модуль 1. ООП Стр.8

// Описание класса

// Описание свойств
public $type = "unknown";
public $name;

// Описание методов
function say($word){
 // Доступ к свойству
 echo $this->name . " said $word";
 // Доступ к методу
 $this->drawLine();
}

function drawLine(){
 echo "<hr>";
}

class Pet{

}

// Создание объектов, экземпляров класса
$cat = new Pet();
$cat = new Pet();
// Изменяем значения свойств
$cat->type = "cat";
$cat->name = "Murzik";
$dog->type = "dog";
$dog->name = "Tuzik";

// Вызываем метод объекта
$cat->say("Myau"); // Murzik said Myau
$dog->say("Gav"); // Tuzik said Gav

Обращение к свойствам и методам
внутри класса

 Модуль 1. ООП Стр.9

// Описание класса

function functionName(){
 echo "<p>Вызвана функция " . __FUNCTION__;
}

function className(){
 echo "<p>Используем класс " . __CLASS__;
}

function methodName(){
 echo "<p>Вызван метод " . __METHOD__;
}

class SuperClass{

}

// Создание объекта
$obj = new SuperClass();

// Используем псевдоконстаты
$obj->functionName(); // functionName
$obj->className(); // SuperClass
$obj->methodName(); // SuperClass::methodName

Использование псевдоконсант

 Модуль 1. ООП Стр.10

Создание класса и его экземпляров

Лабораторная работа 1.1

 Модуль 1. ООП Стр.11

// Описание класса

// Описание свойств
public $type = "unknown";
public $name;

// Конструктор класса
function __construct($type, $name){
 $this->type = $type;
 $this->name = $name;
}

// Описание методов
function say($word){
 // Доступ к свойству
 echo $this->name . " said $word";
 // Доступ к методу
 $this->drawLine();
}

function drawLine(){
 echo "<hr>";
}

// Деструктор класса
function __destruct(){
 echo $this->name . " removed";
}

class Pet{

}

// Создание объектов, экземпляров класса
$cat = new Pet("cat", "Murzik");
$cat = new Pet("dog", "Tuzik");

// Вызываем метод объекта
$cat->say("Myau");
$dog->say("Gav");

Конструкторы и деструкторы

 Модуль 1. ООП Стр.12

Использование конструктора и деструктора

Лабораторная работа 1.2

 Модуль 1. ООП Стр.13

// Копирование значений переменных всех типов, кроме объектов
$x = 10;
$y = $x; // $y - копия $x
$y = 20;
echo $y; // 20
echo $x; // 10

// Создание ссылок для всех типов, кроме объектов
$x = 10;
$y = &$x; // $y - ссылка на $x
$y = 20;
echo $y; // 20
echo $x; // 20

public $param;

// Конструктор класса
function __construct($param){
 $this->param = $param;
}

// Перегружаем оператор clone
function __clone(){
 echo "Object cloned";
}

class MyClass{

}

// Создание объекта
$objX = new MyClass(10); // $objX - ссылка на объект в памяти
$objY = $objX; // $objY - ссылка на $objX

$objY->param = 20;
echo $objX->param; // 20

$objZ = clone $objX; // $objZ копия $objX
$objZ->param = 30;
echo $objX->param; // 20

Клонирование объектов

 Модуль 1. ООП Стр.14

// Создание супер-класса

public $model = "";
public $square = 0;
public $floors = 0;
public $color = "none";

// Конструктор класса
function __construct($model, $square = 0, $floors = 1){
 $this->model = $model;
 $this->square = $square;
 $this->floors = $floors;
}

function startProject(){
 echo "Start. Model: {$this->model}\n";
}

function stopProject(){
 echo "Stop. Model: {$this->model}\n\n";
}

function build(){
 echo "Build. House: {$this->square}x{$this->floors}\n";
}

function paint(){
 echo "Paint. Color: {$this->color}\n";
}

class SimpleHouse{

}

// Создание простого дома
$simple = new SimpleHouse("A-100-123", 120, 2);
$simple->color = "red";
$simple->startProject();
$simple->build();
$simple->paint();
$simple->stopProject();

// Создание класса-наследника

public $fireplace = true;
public $patio = true;

class SuperHouse extends SimpleHouse{

Наследование классов

 Модуль 1. ООП Стр.15

function fire(){
 if ($this->fireplace)
 echo "Fueled fireplace\n";
}

}
$super = new SuperHouse("A-100-125", 320, 3);
$super->color = "green";
$super->startProject();
$super->build();
$super->paint();
$super->fire();
$super->stopProject();

// Создание класса-наследника

// Перегрузка метода
function build(){
 echo "Build. Fabric: {$this->square}x{$this->floors}\n";
}

class FabricHouse extends SimpleHouse{

}

$fabric = new FabricHouse("B-200-007", 3250, 5);
$fabric->color = "white";
$fabric->startProject();
$fabric->build();
$fabric->paint();
$fabric->stopProject();

// Создание класса-наследника

// Перегрузка метода
function build(){
 echo "==\n";
 // Вызов родительского метода
 echo parent::build();
 echo "==\n";
}

class SuperFabricHouse extends FabricHouse{

}

$super_fabric = new SuperFabricHouse("C-201-034", 5150, 7);
$super_fabric->color = "black";
$super_fabric->startProject();
$super_fabric->build();
$super_fabric->paint();
$super_fabric->stopProject();

 Модуль 1. ООП Стр.16

$super_fabric->stopProject();

 Модуль 1. ООП Стр.17

Реализация наследования классов

Лабораторная работа 1.3

 Модуль 1. ООП Стр.18

function test($var = false){
 try {
 echo "Start\n";

 throw new Exception('$var is false!');
echo "Continue\n";

 if(!$var)

 }catch(Exception $e){
 echo "Exception: " . $e->getMessage() . "\n";
 echo "in file: " . $e->getFile() . "\n";
 echo "on line: " . $e->getLine() . "\n";
 }
 echo "The end\n";
}

var_dump(test(), test(1));

// Надо получить ответ от последней функции в цепочке в случае ошибки
// foo() -> bar() -> … -> baz()
// foo() <- bar() <- … <- baz()

function foo(){
 $x = bar();

echo "Плохо";
 if(!$x)

echo "Хорошо";
 else

}
function bar(){
 return baz();
}
// ...
function baz(){
 // Что-то делаем
 if(!$param)
 return false;
 return true;
}

// Проброс исключения
function foo(){

bar();
echo "Хорошо";

 try {

echo $e->getMessage();
 }catch(Exception $e){

 }
}

Обработка исключений

 Модуль 1. ООП Стр.19

}
function bar(){
 baz();
}
// ...
function baz(){
 // Что-то делаем
 if(!$param)
 throw new Exception("Плохо!");
}

// Создание пользовательских исключений
class MathException extends Exception{
 function __construct($msg){
 parent::__construct($msg);
 }

 function someMethod(){
 return __CLASS__;
 }
}

try {
 $x = rand(5, 15);
 $y = rand(0, 1);

throw new MathException("На 0 делить нельзя!");
 if($y == 0) // Генерируем собственное исключение

 if($y < 0) // Генерируем встроенное исключение
 throw new Exception("Что-то случилось!");
 echo $x / $y;
}catch(MathException $e){
 echo $e->someMethod() . ":" . $e->getMessage();
}catch(Exception $e){
 echo $e->getMessage();
}

// Внимание!
try {
 $x = rand(5, 15);
 $y = rand(0, 1);

throw new MathException("На 0 делить нельзя!");
 if($y == 0) // Генерируем собственное исключение

throw new Exception("Что-то случилось!");
 if($y < 0) // Генерируем встроенное исключение

 echo $x / $y;

}catch(Exception $e){
 echo $e->getMessage(); // Попадём сюда!
}catch(MathException $e){
 echo $e->someMethod() . ":" . $e->getMessage();

 Модуль 1. ООП Стр.20

 echo $e->someMethod() . ":" . $e->getMessage();
}

// Финализация
function test($var = false){
 try {
 echo "TRY\n";

 throw new Exception("Error");
 if(!$var)

 }catch(Exception $e){
 echo "CATCH\n";
 }finally{
 echo "FINALLY\n";
 }
}

var_dump(test(), test(1));

// Возвращаем значения
function test($var = false){
 try {
 echo "TRY\n";

 throw new Exception("Error");
return 1;

 if(!$var)

 }catch(Exception $e){
 echo "CATCH\n";
 return 2;
 }finally{
 echo "FINALLY\n";
 return 3; // Можно закомментировать эту строку
 }
}

var_dump(test(), test(1));

 Модуль 1. ООП Стр.21

// Создание абстрактного класса

public $model = "";
public $square;
public $floors;

throw new Exception('Ошибка! Укажите модель!');
if(!$model)

$this->model = $model;
$this->square = $square;
$this->floors = $floors;

function __construct($model, $square = 0, $floors = 1){

}

function startProject(){
 echo "Start. Model: {$this->model}\n";
}

function stopProject(){
 echo "Stop. Model: {$this->model}\n\n";
}

// Абстрактный метод
abstract function build();

class HouseAbstract{

}
// Создание супер-класса

// Свойства абстрактного класса +
public $color = "none";

// Обязательная реализация абстрактного метода
function build(){
 echo "Build. House: {$this->square}x{$this->floors}\n";
}

// Свой метод
function paint(){
 echo "Paint. Color: {$this->color}\n";
}

class SimpleHouse extends HouseAbstract{

}

// Создание простого дома
$simple = new SimpleHouse("A-100-123", 120, 2);
$simple->color = "red";
$simple->startProject();

Абтрактные классы и методы

 Модуль 1. ООП Стр.22

$simple->startProject();
$simple->build();
$simple->paint();
$simple->stopProject();

// Создание класса-наследника

public $fireplace = true;
public $patio = true;

function fire(){
 if ($this->fireplace)
 echo "Fueled fireplace\n";
}

class SuperHouse extends SimpleHouse{

}
$super = new SuperHouse("A-100-125", 320, 3);
$super->color = "green";
$super->startProject();
$super->build();
$super->paint();
$super->fire();
$super->stopProject();

// Создание супер-класса

// Обязательная реализация абстрактного метода
function build(){
 echo "Build. Fabric: {$this->square}x{$this->floors}\n";
}

class FabricHouse extends HouseAbstract{

}

$fabric = new FabricHouse("B-200-007", 3250, 5);
$fabric->startProject();
$fabric->build();
$fabric->stopProject();

// Создание класса-наследника

// Перегрузка метода
function build(){
 echo "==\n";
 // Вызов родительского метода
 echo parent::build();
 echo "==\n";
}

class SuperFabricHouse extends FabricHouse{

 Модуль 1. ООП Стр.23

}

$super_fabric = new SuperFabricHouse("C-201-034", 5150, 7);
$super_fabric->startProject();
$super_fabric->build();
$super_fabric->stopProject();

 Модуль 1. ООП Стр.24

// Создание интерфейса

// Абстрактный метод
function paint();

interface Paintable{

}
interface Brick{}
interface Panel{}

// Создание абстрактного класса

public $model = "";
public $square;
public $floors;

throw new Exception('Ошибка! Укажите модель!');
if(!$model)

$this->model = $model;
$this->square = $square;
$this->floors = $floors;

function __construct($model, $square = 0, $floors = 1){

}

function startProject(){
 echo "Start. Model: {$this->model}\n";
}

function stopProject(){
 echo "Stop. Model: {$this->model}\n\n";
}

// Абстрактный метод
abstract function build();

class HouseAbstract{

}
// Создание супер-класса

// Свойства абстрактного класса +
public $color = "none";

// Обязательная реализация абстрактного метода
function build(){
 echo "Build. House: {$this->square}x{$this->floors}\n";
}

// Обязательная реализация абстрактного метода
function paint(){
 echo "Paint. Color: {$this->color}\n";

class SimpleHouse extends HouseAbstract implements Paintable, Brick{

Интерфейсы

 Модуль 1. ООП Стр.25

 echo "Paint. Color: {$this->color}\n";
}

}

// Создание простого дома
$simple = new SimpleHouse("A-100-123", 120, 2);
$simple->color = "red";
$simple->startProject();
$simple->build();
// Проверка класса в цепочке предков

$simple->paint();
if($simple instanceOf Paintable)

$simple->stopProject();

// Создание класса-наследника

public $fireplace = true;
public $patio = true;

function fire(){
 if ($this->fireplace)
 echo "Fueled fireplace\n";
}

class SuperHouse extends SimpleHouse{

}
$super = new SuperHouse("A-100-125", 320, 3);
$super->color = "green";
$super->startProject();
$super->build();
// Проверка класса в цепочке предков

$super->paint();
if($super instanceOf Paintable)

$super->fire();
$super->stopProject();

// Создание супер-класса

// Обязательная реализация абстрактного метода
function build(){
 echo "Build. Fabric: {$this->square}x{$this->floors}\n";
}

class FabricHouse extends HouseAbstract implements Panel{

}

$fabric = new FabricHouse("B-200-007", 3250, 5);
$fabric->startProject();
$fabric->build();
// Проверка класса в цепочке предков

 Модуль 1. ООП Стр.26

// Проверка класса в цепочке предков

$fabric->paint();
if($fabric instanceOf Paintable)

$fabric->stopProject();

// Создание класса-наследника

// Перегрузка метода
function build(){
 echo "==\n";
 // Вызов родительского метода
 echo parent::build();
 echo "==\n";
}

class SuperFabricHouse extends FabricHouse{

}

$super_fabric = new SuperFabricHouse("C-201-034", 5150, 7);
$super_fabric->startProject();
$super_fabric->build();
// Проверка класса в цепочке предков

$super_fabric->paint();
if($super_fabric instanceOf Paintable)

$super_fabric->stopProject();

 Модуль 1. ООП Стр.27

Использование абстрактных классов и интерфейсов

Лабораторная работа 1.4

 Модуль 1. ООП Стр.28

const NAME = "Рога и копыта";

// Обращение к константе из метода класса
echo self::NAME;

function printName(){

}

class СonstructionCompany{

}

// Обращение к константе без создания экземпляра класса
echo СonstructionCompany::NAME; // Рога и копыта

$company = new СonstructionCompany();
$company->printName(); // Рога и копыта

public name;
// Статическое свойство класса
public static workerCount = 0;

throw new Exception('Ошибка! Укажите имя рабочего!');
if(!$name)

$this->name = $name;
// Изменение статического свойства класса
++self::$workerCount;

function __construct($name){

}

// Статический метод класса

// Никаких $this в статическом методе класса!
echo 'Добро пожаловать на стройплощадку! Нас уже ' . self::$workerCount . "\n";

static function welcome(){

}

class Worker{

}
Worker::welcome();
$w1 = new Worker('Вася Пупкин');
$w2 = new Worker('Федя Сумкин');
echo 'Текущее количество рабочих: ' . Worker::$workerCount . "\n";

// Позднее статическое связывание (с PHP 5.4)
// Проблема

echo __CLASS__;
static function whoAmI(){

}

self::whoAmI();
static function identity(){

}

class A{

}

echo __CLASS__;
static function whoAmI(){

}

class B extends A{

}

Константы и статические члены
класса

 Модуль 1. ООП Стр.29

}
B::identity(); // A

// Позднее статическое связывание (с PHP 5.3)

echo __CLASS__;
static function whoAmI(){

}

static::whoAmI();
static function identity(){

}

class A{

}

echo __CLASS__;
static function whoAmI(){

}

class B extends A{

}
B::identity(); // B

 Модуль 1. ООП Стр.30

Использование статических членов класса

Лабораторная работа 1.5

 Модуль 1. ООП Стр.31

$myClass = new MyClass(); // Ошибка! Описание класса не найдено

echo $class;
function __autoload($class){

}
$myClass = new MyClass(); // MyClass. Далее: Ошибка! Описание класса не найдено

// Решение.
// Описываем класс в одноимённом файле, то есть MyClass.class.php

echo __CLASS__;
function __construct(){

}

class MyClass{

}

// В текущем файле подключаем файл с описанием нужного класса

include $class.'.class.php';
function __autoload($class){

}
$myClass = new MyClass(); // MyClass

Автоматическая загрузка класса

 Модуль 1. ООП Стр.32

Использование автозагрузки классов

Лабораторная работа 1.6

 Модуль 1. ООП Стр.33

class ParenClass{

 public $public = 1;
 protected $protected = 2;
 private $private = 3;

 function getProtected(){
 return $this->protected;
 }
 function getPrivate(){
 return $this->private;
 }
}

$parent = new ParentClass();
echo $parent->public;
echo $parent->protected; // нельзя
echo $parent->private; // нельзя

echo $parent->getProtected();
echo $parent->getPrivate();

class ChildClass{
 function getParentProtected(){
 return $this->protected;
 }
 function getParentPrivate(){
 return $this->private;
 }

 function getRealParentPrivate(){
 return $this->getPrivate();
 }
}
$child = new ChildClass();
echo $child->getParentProtected();
echo $child->getParentPrivate(); // нельзя

echo $child->getRealParentPrivate();

// Использование модификаторов

private $model = "";
private $square;

class HouseAbstract{

Модификаторы доступа к свойствам и
методам

 Модуль 1. ООП Стр.34

private $square;
private $floors;

throw new Exception('Ошибка! Укажите модель!');
if(!$model)

$this->model = $model;
$this->square = $square;
$this->floors = $floors;

function __construct($model, $square = 0, $floors = 1){

}

function getModel(){
 return $this->model;
}

function getSquare(){
 return $this->square;
}

function getFloors(){
 return $this->floors;
}
// Описание других методов

}

private $color = "none";

function getColor(){
 return $this->color;
}

function setColor(){
 return $this->color;
}
// Описание других методов

class SimpleHouse{

}

$simple = new SimpleHouse("A-100-123", 120, 2);
$simple->setColor("red");

 Модуль 1. ООП Стр.35

class MyClass{}

$obj = new MyClass();
obj->param = 100;
echo obj->param; // 100
obj->func(10, 20); // Ошибка!

class MyClass{

 function __set($name, $value){
 echo "Set property '$name' to value $value";
 }

 function __get($name){
 return "Access to property '$name'";
 }

 function __call($name, $args){
 echo "Call method '$name' with arguments: " . implode(', ', $args);
 }

 static function __callStatic($name, $args){
 echo "Call static method '$name' with arguments: " . implode(', ', $args);
 }
}

$obj = new MyClass();
obj->param = 100; // Set property 'param' to value 100
echo obj->param; // Accsess to property 'param'
obj->func(10, 20); // Call method 'func' width arguments: 10, 20
MyClass::staticFunc(10, 20); // Call static method 'staticFunc' width arguments: 10, 20

// Использование "магических" сеттеров и геттеров

private $model = "";
private $square;
private $floors;

throw new Exception('Ошибка! Укажите модель!');
if(!$model)

$this->model = $model;
$this->square = $square;
$this->floors = $floors;

function __construct($model, $square = 0, $floors = 1){

}

function __get($name){
 switch($name){
 case 'model': return $this->model;
 case 'square': return $this->square;
 case 'floors': return $this->floors;
 default: throw new Exception('Неизвестное свойство!');
 }
}

class HouseAbstract{

Доступ к недоступным свойствам и
методам

 Модуль 1. ООП Стр.36

}
// Описание других методов

}

private $color = "none";

function __get($name){
 switch($name){
 case 'color': return $this->color;
 default: throw new Exception('Неизвестное свойство!');
 }
}

function __set($name, $value){
 switch($name){
 case 'color': $this->color = $value; break;
 default: throw new Exception('Неизвестное свойство!');
 }
}
// Описание других методов

class SimpleHouse{

}

$simple = new SimpleHouse("A-100-123", 120, 2);
$simple->color("red");
echo $simple->color;

 Модуль 1. ООП Стр.37

// Преобразование объекта в строку

class MyClass{}

$obj = new MyClass();
echo obj; // Ошибка!

class MyClass{

 function __toString(){
 return 'Это объект, экземпляр класса ' . __CLASS__;
 }

}

$obj = new MyClass();
echo obj; // Это объект, экземпляр класса MyCLASS

// Обращение к объекту как к функции

class Math{

 function __invoke($num, $action){

 switch($action){
 case '+': return $num + $num;
 case '*': return $num - $num;
 default: throw new Exception('Неизвестное свойство!');
 }
 }

}

$obj = new Math();
echo obj(5, '+'); // 10
echo obj(5, '*'); // 25

// Сериализация объекта

private $login;
private $password;
private $params = [];

class User{

Ещё немного магии

 Модуль 1. ООП Стр.38

$this->login = $login;
$this->password = $password;
$this->params = $this->getUser();

function __construct($login, $password){

}

function getUser(){
// Что-то делаем
// Например, возвращаем массив данных пользователя
}

// Вызывается перед сериализацией
function __sleep(){
 return ['login', 'password'];
}

// Вызывается после сериализации
function __wakeup(){
 $this->params = $this->getUser();
}

}

$obj = new User("john", "1234");
$str = serialize($obj);
unset($obj);
$obj = unserialize($str);

 Модуль 1. ООП Стр.39

// Финальный класс
final class Breakfast{
 function eatFood($food){
 echo "Съели $food";
 }
}
class McBreakfast extends Breakfast{}

$obj = new McBreakfast(); // Ошибка!

class Math{
 // Финальный метод
 final function sum($num1, $num2){
 echo 'Сумма: ' . $num1 + $num2;
 }
}

class Algebra extends Math{
 function sum($num1, $num2){
 $result = $num1 + $num2;
 echo "Сумма: $num1 и $num2 = $result";
 }
}

$obj = new Algebra(); // Ошибка!

Финальные классы и методы

 Модуль 1. ООП Стр.40

// Базовое использование

trait Hello{
 function getGreet(){
 return "Hello";
 }
}

trait User{
 function getUser($name){
 return ucfirst($name);
 }
}

class Welcome{
 use Hello, User;
}

$obj = new Welcome();
echo $obj->getGreet(), ', ', $obj->getUser('john'), '!';
// Hello, John!

// Наследование
trait Greeting{
 use Hello, User;

 function sayHello($name){
 echo $obj->getGreet(), ', ', $obj->getUser($name), '!';
 }

}

class Welcome{
 use Greeting;
}

(new Welcome())->sayHello('john');

// Изменение модификаторов доступа
trait Hello{
 private function sayHello($name){
 return "Hello, $name!";
 }
}

Типажи (traits)

 Модуль 1. ООП Стр.41

class Welcome{
 use Hello{
 sayHello as public;
 }
}

(new Welcome())->sayHello('John');

// Разрешение конфликтов имён
trait Hello{
 private function sayHello(){
 return "Hello";
 }
}

trait User{
 public function sayHello($name){
 return $name;
 }
}

class Welcome{
 use User, Hello{
 Hello::sayHello as public word;
 User::sayHello insteadof Hello;
 }
}

$obj = new Welcome();
echo $obj->word(), ', ', $obj->sayHello('John'), '!';

 Модуль 1. ООП Стр.42

// Базовое использование
class MyClass{}
$my = new MyClass();
$std = new stdClass();

// Ожидается передача объекта, экземпляра класса MyClass
function foo(MyClass $obj){}

foo($my); // Отработает успешно
foo($std); // Ошибка!

class MyClass{

 function func(){
 return __METHOD__;
 }

 static function staticFunc(){
 return __METHOD__;
 }

 function __invoke(){
 return __METHOD__;
 }
}

$obj = new MyClass();

// Ожидается то, что можно вызвать
function foo(callable $x){
 if(func_num_args() == 2){
 $m = func_get_arg(1);
 return $x->$m();
 }elseif(is_array($x)){
 return $x[0]::$m[1]();
 }else{
 return $x();
 }
}

echo foo($obj, "func"); // MyClass::func
echo foo(["MyClass", "staticFunc"]); // MyClass::staticFunc
echo foo($obj); // MyClass::__invoke

// Полезные функции для классов и объектов

Уточнение типа и полезные функции

 Модуль 1. ООП Стр.43

// Полезные функции для классов и объектов
http://php.net/manual/ru/ref.classobj.php

 Модуль 1. ООП Стр.44

http://php.net/manual/ru/ref.classobj.php

Познакомились с парадигмой ООП

 Уяснили специфику реализации ОО парадигмы в PHP

Что мы изучили?

 Модуль 1. ООП Стр.45

Лабораторная работа 1.1

Лабораторная работа 1.2

Лабораторная работа 1.3

Лабораторная работа 1.4

 Лабораторная работа 1.5
 Лабораторная работа 1.6

Лабораторные работы

 Модуль 1. ООП Стр.46

Создание класса и его экземпляров

Упражнение 1: Создание класса

Создайте класс User•

В текстовом редакторе откройте файл oop\users.php•

В классе создайте свойства name, login и password•

В классе создайте и опишите метод showInfo(), который выводит
информацию о пользователе в произвольной форме

•

Создайте три объекта, экземпляра класса User: $user1, $user2 и $user3•

Задайте произвольные значения свойств name, login и password для
каждого из объектов

•

Вызовите метод showInfo() для каждого объекта •

Сохраните файл oop\users.php•

Упражнение 2: Вывод данных в браузер

Запустите браузер •

Наберите в адресной строке браузера
http://mysite.local/oop/users.php

•

Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте•

Лабораторная работа 1.1

 Модуль 1. ООП Стр.47

http://mysite.local/oop/users.php

Использование конструктора и деструктора

Упражнение 1: Создание конструктора

В текстовом редакторе откройте файл oop\users.php•

В классе User создайте и опишите конструктор, который принимает в
качестве аргументов имя, логин и пароль пользователя

•

Конструктор должен инициализировать свойства name, login и
password

•

Измените код, который инициализирует объекты, передавая нужные
параметры в конструктор

•

Удалите те строки кода, в которых задаются значения свойств
объектов

•

Упражнение 2: Создание деструктора

В классе User создайте и опишите деструктор •

Деструктор должен выводить строку Пользователь
[логин_пользователя] удален

•

Подставьте вместо подстроки [логин_пользователя] значение
свойства login

•

Сохраните файл oop\users.php•

Упражнение 3: Проверка работы скрипта

Запустите браузер •

Наберите в адресной строке браузера
http://mysite.local/oop/users.php

•

Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте•

Лабораторная работа 1.2

 Модуль 1. ООП Стр.48

http://mysite.local/oop/users.php

Реализация наследования классов

Упражнение 1: Создание класса-наследника

• В текстовом редакторе откройте файл oop\users.php

• Создайте и опишите класс SuperUser, наследованный от класса User

• В классе SuperUser создайте свойство role

• Перегрузите конструктор супер-класса так, чтобы он принимал
четвёртым параметром значение для свойства role

• Вызовите из конструктора родительский конструктор и передайте в
него первые три параметра

• Перегрузите метод супер-класса showInfo() так, чтобы выводилось и
значение свойства role

• Создайте объект $user, экземпляр класса SuperUser

• Вызовите метод showInfo() объекта $user

• Сохраните файл oop\users.php

Упражнение 2: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/oop/users.php

• Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте

Лабораторная работа 1.3

 Модуль 1. ООП Стр.49

http://mysite.local/oop/users.php

Использование абстрактных классов и интерфейсов

Упражнение 1: Создание и использование абстрактного класса

• В текстовом редакторе откройте файл oop\users.php

• Создайте и опишите абстрактный класс UserAbstract

• В классе UserAbstract объявите абстрактный метод showInfo()

• Обновите класс User, унаследовав его от абстрактного класса
UserAbstract

• Если требуется, внесите в класс User необходимые изменения

• Сохраните файл oop\users.php

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/oop/users.php

• Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте

Упражнение 2: Создание и использование интерфейса

• В текстовом редакторе откройте файл oop\users.php

• Создайте и опишите интерфейс ISuperUser

• В интерфейсе ISuperUser объявите метод getInfo()

• Обновите класс SuperUser, унаследовав его от интерфейса ISuperUser

• Создайте и опишите метод getInfo() в классе SuperUser

• Метод getInfo() должен возвращать ассоциативный массив, в котором
именами элементов массива являются имена свойств объекта, а
значениями элементов - значения свойств объекта

• Вызовите метод getInfo() для экземпляра класса SuperUser

• Используйте функцию print_r() для просмотра данных, полученных с
помощью метода getInfo()

• Сохраните файл oop\users.php

• Запустите браузер

Лабораторная работа 1.4

 Модуль 1. ООП Стр.50

http://mysite.local/oop/users.php

• Наберите в адресной строке браузера
http://mysite.local/oop/users.php

• Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте

 Модуль 1. ООП Стр.51

http://mysite.local/oop/users.php

Использование статических членов класса

Упражнение 1: Уяснение задачи

• Посчитать количество созданных экземпляров класса User

• Посчитать количество созданных экземпляров класса SuperUser

• Пользователи считаются отдельно для каждого класса

Упражнение 2: Создание статических свойств классов

• В текстовом редакторе откройте файл oop\users.php

• Создайте в классах User и SuperUser статические свойства для
подсчета количества созданных объектов

• Присвойте этим свойствам начальное значение 0

• В конструкторах классов инкрементируйте значения данных свойств

• В нижней части кода, после создания экземпляров классов, выведите
в браузер количество тех и других объектов примерно так:
Всего обычных пользователей:
[количество_экземпляров_класса_User]
Всего супер-пользователей:
[количество_экземпляров_класса_SuperUser]

• Сохраните файл oop\users.php

Упражнение 3: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/oop/users.php

• Проверьте работу скрипта. Если есть ошибки, найдите их и исправьте

Лабораторная работа 1.5

 Модуль 1. ООП Стр.52

http://mysite.local/oop/users.php

Использование автозагрузки классов

Упражнение 1: Создание классов в отдельных файлах

• В текстовом редакторе откройте файл oop\users.php

• В текстовом редакторе создайте новый файл

• Перенесите описание абстрактного класса UserAbstract из файла oop
\users.php в новый файл

• Сохраните новый файл как oop\classes\UserAbstract.class.php

• В текстовом редакторе создайте новый файл

• Перенесите описание класса User из файла oop\users.php в новый
файл

• Сохраните новый файл как oop\classes\User.class.php

• В текстовом редакторе создайте новый файл

• Перенесите описание интерфейса ISuperUser из файла oop\users.php
в новый файл

• Сохраните новый файл как oop\classes\ISuperUser.class.php

• В текстовом редакторе создайте новый файл

• Перенесите описание класса SuperUser из файла oop\users.php в
новый файл

• Сохраните новый файл как oop\classes\SuperUser.class.php

• Сохраните файл oop\users.php

Упражнение 2: Использование автозагрузки файлов

• В файле oop\users.php (основной код) создайте и опишите функцию
__autoload(), которая производит автозагрузку нужного класса при
создании его экземпляра

• Сохраните файл oop\users.php

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/oop/users.php

Лабораторная работа 1.6

 Модуль 1. ООП Стр.53

http://mysite.local/oop/users.php

http://mysite.local/oop/users.php

• Проверьте работу скрипта. Вы не должны увидеть никаких
изменений. Если есть ошибки, найдите их и исправьте

 Модуль 1. ООП Стр.54

http://mysite.local/oop/users.php

PHP. Уровень 3
Практическое использование
ООП с базой данных SQLite

Модуль 2

 Модуль 2. SQLite Стр.55

Обзор базы данных SQLite

Преимущества и ограничения SQLite перед
другими базами данных



Особенности SQLite

Выполнение основных операций с базой данных

Темы модуля

 Модуль 2. SQLite Стр.56

 Библиотека, написанная на языке С
 Осуществляет механизм работы с данными с

помощью SQL
 http://sqlite.org

Что такое SQLite?

 Модуль 2. SQLite Стр.57

http://sqlite.org

○ Полностью бесплатна

○ Нет необходимости в средствах
администрирования

○ Высокая производительность и легкая
переносимость

○ Поддержка процедурного и
объектноориентированного интерфейсов

○ Хранение больших объемов данных

○ Хранение строк и бинарных данных
неограниченной длины

 Преимущества

○ Предназначена для небольших и средних
приложений

○ Основной выигрыш в производительности,
если преобладают операции вставки и
выборки данных

○ При чрезвычайно активном обращении к
данным, или в случае частых сортировок,
SQLite работает медленнее своих
конкурентов

 Ограничения

Преимущества и ограничения

 Модуль 2. SQLite Стр.58

 В PHP 5.0 поддержка SQLite версии 2 была
встроена в ядро

○ extension=php_sqlite.dll

 Начиная с PHP 5.1 поддержка SQLite вынесена за
пределы ядра

○ extension=php_sqlite3.dll
 В PHP 5.3 добавлена поддержка SQLite версии 3

○ extension=php_sqlite.dll
 В PHP 5.4 поддержка SQLite версии 2 удалена

Поддержка SQLite в PHP

 Модуль 2. SQLite Стр.59

○ CREATE TABLE users(id INTEGER, name TEXT,
age INTEGER)

 Можно так

○ CREATE TABLE users(id, name, age)
 Можно так

○ id INTEGER PRIMARY KEY

○ id INTEGER PRIMARY KEY AUTOINCREMENT

 Для задания первичного ключа

○ 'Harry O''Brian'
 Экранирование строк через двойной апостроф

Особенности SQLite

 Модуль 2. SQLite Стр.60

// Создаём или открываем базу данных test.db
$db = new SQLite3("test.db");

// Закрываем базу данных без удаления объекта
$db->close();

// Открываем другую базу данных для работы
$db->open("another.db");

// Удаляем объект
unset($db);

Создание, открытие и закрытие базы
данных

 Модуль 2. SQLite Стр.61

○ основной файл новостной ленты
 news.php

○ интерфейс INewsDB с декларациями методов
для новостной ленты

 INewsDB.class.php

○ класс NewsDB реализующий интерфейс
INewsDB

 NewsDB.class.php

○ php-код обработки данных для добавления
записи в таблицу БД

 save_news.php

○ php-код обработки данных для удаления
записи из таблицы БД

 delete_news.php

○ вывод списка записей из таблицы БД
 get_news.php

Структура приложения "Лента
новостей"

 Модуль 2. SQLite Стр.62

Создание класса веб-приложения

Лабораторная работа 2.1

 Модуль 2. SQLite Стр.63

// Экранирование строк
$name = $db->escapeString($name);

// Для запросов без выборки данных
$sql = "INSERT INTO users (name, age)
 VALUES ('$name', 25)";

// Возвращает значение булева типа
$result = $db->exec($sql);

// Количество изменённых записей
echo $db->changes();

// Отслеживание ошибок
echo $db->lastErrorCode();
echo $db->lastErrorMsg();

Выполнение запроса

 Модуль 2. SQLite Стр.64

$sql = "INSERT INTO users (name, age)
 VALUES (:name, :age)";

// Готовим запрос
$stmt = $db->prepare($sql);
// Привязываем параметры
$stmt->bindParam(':name', $name);
$stmt->bindParam(':age', $age);
// Исполняем запрос
$result = $stmt->execute();
// Закрываем при необходимости
$stmt->close();

Подготовленные запросы

 Модуль 2. SQLite Стр.65

Создание и заполнение базы данных веб-приложения

Лабораторная работа 2.2

 Модуль 2. SQLite Стр.66

Добавление записей в базу данных

Лабораторная работа 2.3

 Модуль 2. SQLite Стр.67

$sql = "SELECT name, age FROM users";

// В случае неудачи возвращает false
$result = $db->querySingle($sql);
// В $result - значение первого поля первой записи

$result = $db->querySingle($sql, true);
// В $result - массив значений первой записи

// Стандартная выборка
$result = $db->query($sql);
// Обработка выборки
$row = $result->fetchArray(); // SQLITE3_BOTH

// Получаем ассоциативный массив
$row = $result->fetchArray(SQLITE3_ASSOC);
// Получаем индесированный массив
$row = $result->fetchArray(SQLITE3_NUM);

Выборка данных

 Модуль 2. SQLite Стр.68

Выборка записей из базы данных и их показ

Лабораторная работа 2.4

 Модуль 2. SQLite Стр.69

Удаление записей из базы данных

Лабораторная работа 2.5

 Модуль 2. SQLite Стр.70

Познакомились с базой данных SQLite

Научились базовому использованию расширения PHP SQLITE3

 Создали небольшое веб-приложение, используя при его разработке
объектно-ориентировааный подход

Что мы изучили?

 Модуль 2. SQLite Стр.71

Лабораторная работа 2.1

Лабораторная работа 2.2

Лабораторная работа 2.3

Лабораторная работа 2.4

Лабораторная работа 2.5

Лабораторные работы

 Модуль 2. SQLite Стр.72

Создание класса веб-приложения

Упражнение 1: Создание класса

• В текстовом редакторе откройте файл news\INewsDB.class.php

• Внимательно ознакомьтесь с его содержимым

• В текстовом редакторе откройте файл news\NewsDB.class.php

• Создайте и опишите класс NewsDB реализующий интерфейс INewsDB

• Создайте константу класса DB_NAME и присвойте ей значение
news.db - имя базы данных. Файл должен создаваться в корневой
директории сайта!

• Создайте закрытое (private) свойство $_db для хранения экземпляра
класса SQLite3.

• Подумайте, что если данный класс будет наследоваться? Надо
обеспечить доступ на чтение значения свойства $_db классам-
наследникам

Упражнение 2: Создание конструктора и деструктора класса

• Создайте и опишите конструктор класса, в котором выполняется
подключение к базе данных SQLite

• Присвойте свойству $_db значение, которое является экземпляром
класса SQLite3

• Создайте и опишите деструктор класса, в котором выполняется
удаление экземпляра класса SQLite3

Упражнение 3: Проверка работы скрипта

• В глобальной области кода (вне класса) создайте временный объект
$news, экземпляр класса NewsDB

• Сохраните файл news\NewsDB.class.php

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/NewsDB.class.php

Откройте проводник Windows и перейдите в корневую директорию

Лабораторная работа 2.1

 Модуль 2. SQLite Стр.73

http://mysite.local/news/NewsDB.class.php

• Откройте проводник Windows и перейдите в корневую директорию
сайта mysite.local
(C:\Пользователи\Общие\OpenServer\domains\mysite.local\)

• В директории вы должны увидеть созданный пустой файл news.db

• Если файла нет или код выдает ошибки, найдите их и исправьте

• Удалите файл news.db

 Модуль 2. SQLite Стр.74

Создание и заполнение базы данных веб-приложения

Упражнение 1: Изменение конструктора класса

• В текстовом редакторе откройте файл news\news.txt

• Ознакомьтесь со структурой базы данных news

• В текстовом редакторе откройте файл news\NewsDB.class.php

•

○ Если базы данных не существует, создайте ее и выполните SQL
запросы для добавления таблиц. Готовые запросы находятся в
файле news\news.txt

○ В противном случае, просто откройте существующую базу данных
для работы

Измените конструктор класса так, чтобы в нём выполнялась проверка,
существует ли база данных на следующих условиях:

• Сохраните файл news\NewsDB.class.php

Упражнение 2: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/NewsDB.class.php

• В корневой директории вы должны увидеть созданный заполненный
файл news.db

• Если файла нет или он есть, но пустой, или код выдает ошибки,
найдите их и исправьте

• В файле news\NewsDB.class.php удалите строку создающую объект
$news и сохраните данный файл

Лабораторная работа 2.2

 Модуль 2. SQLite Стр.75

http://mysite.local/news/NewsDB.class.php

Добавление записей в базу данных

Упражнение 1: Настройка главного файла

• В текстовом редакторе откройте файл news\news.php

• В начале файла подключите файл с описанием класса NewsDB

• Создайте объект $news, экземпляр класса NewsDB

• Создайте переменную $errMsg со строковым значением "" (пустая
строка)

• Ниже по коду после строки <h1>Последние новости</h1> проверьте,
не является ли переменная $errMsg пустой строкой? Если НЕТ, то
выведите значение переменной $errMsg в произвольной форме

• В верхней части файла (после объявления переменной $errMsg)
проверьте, была ли отправлена HTML-форма? Если ДА, то подключите
файл с кодом для обработки HTML-формы save_news.inc.php

• Сохраните файл news\news.php

Упражнение 2: Описание метода добавления записи в базу
данных

• В текстовом редакторе откройте файл news\NewsDB.class.php

• Опишите метод saveNews(). Описание параметров и возвращаемого
значеня метода можно посмотреть в интерфейсе INewsDB

• Создайте переменную $dt и присвойте ей значение текущих даты и
времени в формате временной метки (timestamp)

• Сформируйте строку запроса на добавление новой записи в таблицу
msgs, используя переменную $dt и переданные параметры

• Выполните запрос

• Возвратите нужное значение

• Сохраните файл news\NewsDB.class.php

Упражнение 3: Обработка параметров HTML-формы

• В текстовом редакторе откройте файл news\save_news.inc.php

Проверьте, была ли корректным образом отправлена HTML-форма?

Лабораторная работа 2.3

 Модуль 2. SQLite Стр.76

•

○ Если НЕТ, то присвойте переменной $errMsg строковое значение
"Заполните все поля формы!"

○ Если ДА, то отфильтруйте полученные данные и вызовите метод
saveNews(), передав ему необходимые параметры

Проверьте, была ли корректным образом отправлена HTML-форма?

•

○ Если ДА, выполните перезапрос страницы news.php

○ Если НЕТ, то присвойте переменной $errMsg строковое значение
"Произошла ошибка при добавлении новости"

С помощью возвращаемого методом значения проверьте, был ли
запрос успешным?

• Сохраните файл news\save_news.inc.php

Упражнение 4: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/news.php

• Добавьте новость заполнив поля HTML-формы

• Откройте файл базы данных news.db в тестовом редакторе и
убедитесь, что запись добавлена

• Добавьте еще несколько новостей

• Попробуйте послать форму, оставив некоторые поля пустыми

• Если есть ошибки, найдите их и исправьте

 Модуль 2. SQLite Стр.77

http://mysite.local/news/news.php

Выборка записей из базы данных и их показ

Упражнение 1: Описание метода выборки записей из базы
данных

• В текстовом редакторе откройте файл news\NewsDB.class.php

• Опишите метод getNews(). Описание параметров и возвращаемого
значеня метода можно посмотреть в интерфейсе INewsDB

• Сформируйте строку SQL-запроса на выборку всех данных из таблицы
msgs в обратном порядке. Обратите внимание, что в запросе
необходимо сделать объединение двух таблиц. Запрос должен
выглядеть примерно так:

SELECT msgs.id as id, title, category.name as category,
 description, source, datetime
 FROM msgs, category
 WHERE category.id = msgs.category
 ORDER BY msgs.id DESC

• Выполните запрос

• Возвратите нужное значение

• Сохраните файл news\NewsDB.class.php

Упражнение 2: Подключение файла обработки данных

• В текстовом редакторе откройте файл news\news.php

• Внизу файла перед закрывающим тэгом подключите файл news
\get_news.inc.php с кодом для обработки полученных записей

• Сохраните файл news\news.php

Упражнение 3: Вывод записей

• В текстовом редакторе откройте файл news\get_news.inc.php

• Вызовите метод getNews()

•

○ Если НЕТ, то присвойте переменной $errMsg строковое значение
"Произошла ошибка при выводе новостной ленты"

С помощью возвращаемого методом значения проверьте, был ли
запрос успешным?

Лабораторная работа 2.4

 Модуль 2. SQLite Стр.78

"Произошла ошибка при выводе новостной ленты"

○ Если ДА, то получите количество записей и выведите его в
браузер в произвольной форме

• Используя цикл, выведите в браузер все новости со ссылкой на
конкретную новость в произвольной форме

• После каждого сообщения сформируйте ссылку для удаления этой
записи. Информацию об идентификаторе удаляемого сообщения
передавайте методом GET

• Сохраните файл news\get_news.inc.php

Упражнение 4: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/news.php

• Убедитесь, что данные выводятся корректно. Если есть ошибки,
найдите их и исправьте

 Модуль 2. SQLite Стр.79

http://mysite.local/news/news.php

Удаление записей из базы данных

Упражнение 1: Описание метода удаления записи из базы данных

• В текстовом редакторе откройте файл news\NewsDB.class.php

• Опишите метод deleteNews(). Описание параметров и возвращаемого
значеня метода можно посмотреть в интерфейсе INewsDB

• Сформируйте строку SQL-запроса на удаление записи

• Выполните запрос и возвратите нужное значение

• Сохраните файл news\NewsDB.class.php

Упражнение 2: Подключение файла обработки данных для
удаления

• В текстовом редакторе откройте файл news\news.php

• Вверху файла перед началом HTML-кода подключите файл news
\delete_news.inc.php с кодом для обработки данных для удаления
записи

• Перед подключением убедитесь в наличие параметра, который
указывает на удаление записи

• Сохраните файл news\news.php

Упражнение 3: Удаление записи

• В текстовом редакторе откройте файл news\delete_news.inc.php

• Примите и отфильтруйте полученные данные

•

○ Если НЕТ, то просто выполните перезапрос страницы

○ Если ДА, то вызовите метод deleteNews()

Проверьте, корректны ли полученные данные?

•

○ Если НЕТ, то присвойте переменной $errMsg строковое значение
"Произошла ошибка при удалении новости"

Если ДА, то выполните перезапрос страницы, чтобы избавиться

С помощью возвращаемого методом значения проверьте, был ли
запрос успешным?

Лабораторная работа 2.5

 Модуль 2. SQLite Стр.80

○ Если ДА, то выполните перезапрос страницы, чтобы избавиться
от информации, переданной через адресную строку

• Сохраните файл news\delete_news.inc.php

Упражнение 4: Проверка работы скрипта

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/news.php

• Попробуйте удалить одну или несколько записей

• Убедитесь, что записи удаляются корректно

• Попробуйте удалить несуществующую запись

• Попробуйте передать GET-параметром произвольную строку

• Убедитесь, что показывается информация об ошибках

• Если есть ошибки, найдите их и исправьте

 Модуль 2. SQLite Стр.81

http://mysite.local/news/news.php

PHP. Уровень 3
PHP и XML

Модуль 3

 Модуль 3. XML Стр.82

 Введение в XML-технологии

○ SAX

○ DOM

○ SimpleXML
○ XMLReader и XMLWriter

 XML-технологий в PHP

 Обзор XSL/T
 Преобразование данных на сервере

Темы модуля

 Модуль 3. XML Стр.83



○ Расширяемый язык разметки
XML (Extensible Markup Language)



○ хранения структурированных данных

○ обмена информацией между программами
○ создания на его основе других, более

специализированных, языков разметки (OFX,
OTP, WSDL, SOAP, VML, XSL, ebXML, CML,
XLANG)

Предназначен для:



○ обеспечение совместимости при передаче
структурированных данных между разными
системами обработки информации

Цель создания:

○ HTML описывает ИЗ ЧЕГО СОСТОИТ и КАК
отображать документ

○ XML определяет ЗНАЧЕНИЕ и ОТНОШЕНИЕ
данных

 Различия XML и HTML

Введение в XML

 Модуль 3. XML Стр.84

Если документ содержит символы, выходящие
за рамки ASCII, необходимо указать кодировку



XML-документ состоит из вложенных элементов

Элемент состоит из открывающего и
закрывающего тегов, а также содержимого



XML чувствителен к регистру символов

Элементы могут вкладывться друг в друга

Теги должны быть правильно вложены друг в
друга



Все парные теги должны быть закрыты

Возможно формирование пустых элементов

Должен существовать только один корневой
элемент, который содержит все остальные
элементы. Пустой документ (без корневого
элемента) недопустим!



Элементы могут иметь атрибуты

Значения атрибутов заключаются в одинарные
или двойные кавычки



У каждого конкретного элемента не должно
быть повторяющихся атрибутов



Правила XML

 Модуль 3. XML Стр.85

○ Документы, полностью соответствующие
правилам оформления XML

○ Корректность проверяется XML-парсер

 Корректные XML-документы (well-formed)

○ Корректные XML-документы, которые
соответствуют заранее определенному
набору правил

○ Валидность проверяется валидатором

 Валидные XML-документы (valid)

○ DTD – Document Type Definition

○ XML Схемы

 Описание структуры документа

Корректность и валидность XML-
документов

 Модуль 3. XML Стр.86

○ чтение XML-документа
 SAX (Simple API for XML)

○ чтение, модификация и создание новых XML-
документов

 DOM (Document Object Model)

○ чтение и модификация XML-документов
 SimpleXML

○ чтение и модификация XML-документов
 XMLReader и XMLWriter

○ преобразование XML-документов в другие
форматы

 XSL/T (Extensible StylesheetLanguage
Transformations)

Средства PHP для работы с XML-
документом

 Модуль 3. XML Стр.87

 Официальный сайт: http://www.saxproject.org/
 Описывает метод парсинга XML-документов для получения данных из них
 Создавать и изменять XML-документы с помощью SAX невозможно
 Основан на событиях
 XML-парсеру предоставляется набор собственных функций для обработки

различных типов XML-данных
 Парсер автоматически вызывает эти функции в процессе последовательной

обработки XML-документа

// Использование SAX

// Создание парсера
$sax = xml_parser_create("utf-8");

// Декларация функций обработки событий
function onStart($parser, $tag, $attributes){}
function onEnd($parser, $tag){}
function onText($parser, $text){}

// Регистрация функций как обработчиков событий
xml_set_element_handler($sax, "onStart", "onEnd");
xml_set_character_data_handler($sax, "onText");

// Запуск парсера
xml_parse($sax, "XML строка!");

// Обработка ошибок
echo xml_error_string(xml_get_error_code($sax));

Simple API for XML (SAX)

 Модуль 3. XML Стр.88

http://www.saxproject.org/

 Интерфейс, позволяющий программам управлять содержимым документов
XML, а также изменять их структуру

 Существует спецификация DOM (W3C)
 Представляет XML-документ в виде дерева узлов

 Типы узлов документа

Код
типа

Тип узла Описание Пример

1 ELEMENT Элемент <book>…</book>

2 ATTRIBUTE Атрибут элемента lang="ru"

3 TEXT Текстовый узел Это текст

8 COMMENT Комментарий <!–
Комментарий
-->

10 DocumentType Декларация типа документа <!DOCTYPE html >

 Связи между узлами

Document Object Model (DOM)

 Модуль 3. XML Стр.89

Связи между узлами

 Модуль 3. XML Стр.90

// Чтение XML-документа

// Создание объекта, экземпляра класса DomDocument
$dom = new DomDocument();

// Загрузка документа
$dom->load("catalog.xml");

// Получение коневого элемента
$root = $dom->documentElement;

// Получение типа узла
echo $root->nodeType; // 1

// Получение коллекции дочерних узлов (экземпляр класса DomNodeList)
$children = $root->childNodes;

// Получение текстового содержимого узла
$content = $root->textContent;

// Получение коллекции элементов с определённым именем
$books = $dom->getElementsByTagName("book");

// Создание/изменение XML-документа

// Создание объекта, экземпляра класса DomDocument
$dom = new DomDocument("1.0", "utf-8");

// Получение коневого элемента
$root = $dom->documentElement;

// Создание новых элементов
$book = $dom->createElement("book");
$title = $dom->createElement("title");

// Создание текстового узла
$text = $dom->createTextNode("Название книги");

// Добавление узлов к узлам
$title->appendChild($text);
$book->appendChild($title);
$root->appendChild($book);

// Другой вариант создания нового элемента
$author = $dom->createElement("author", "Автор книги");
// Добавляем узел к узлу перед другим узлом

Использование DOM

 Модуль 3. XML Стр.91

// Добавляем узел к узлу перед другим узлом
$book->insertBefore($author, $title);

// Создаём секцию CDATA
$description = $dom->createElement("description");
$cdata = $dom->createCDATASection("...описание книги...");
$description->appendChild($cdata);
$book->appendChild($description);

// Сохраняем документ
$dom->save("catalog.xml");

 Модуль 3. XML Стр.92

Создание RSS с помощью DOM

Лабораторная работа 3.1

 Модуль 3. XML Стр.93

// Загружаем документ и преобразуем его в объект
$sxml = simplexml_load_file("catalog.xml");
// Загружаем XML-строку и преобразуем его в объект
$sxml = simplexml_load_string("XML строка");

// Получение текста нужного элемента (название второй книги)
echo $sxml->book[1]->title;

// Получение атрибута элемента
echo $sxml->book[1]->title["lang"];

// Изменение текста нужного элемента (название первой книги)
$sxml->book[0]->title = "Новое название";

// Преобразование объекта в строку
$xml = $sxml->asXML();
// Запись строки в файл
file_put_contents("catalog.xml", $xml);

Использование SimpleXML

 Модуль 3. XML Стр.94

Чтение RSS с помощью SimpleXML

Лабораторная работа 3.2

 Модуль 3. XML Стр.95

// Использование XMLReader

// Создание объекта
$xml = new XMLReader("catalog.xml");
// Перемещение курсора
$xml->read();
$xml->next();
// Получение свойств элемента
echo $xml->nodeType;
echo $xml->depth;
echo $xml->name;
echo $xml->value;
// Получение объекта DomNode
$domNode = $xml->expand();

// Использование XMLWriter

// Создание объекта
$writer = new XMLWriter();
// Выделение памяти под запись
$writer->openMemory();
// Создавать отступы
$writer->setIndent = true;

// Создание документа и узлов
$writer->startDocument("1.0", "utf-8");
 $writer->startElement("catalog");
 $writer->startElement("book");
 $writer->startElement("title");
 $writer->text("Название книги");
 $writer->endElement();
 $writer->endElement();
 $writer->endElement();
$writer->endDocument();

// Получаем XML-строку
$xml = $writer->outputMemory();
// Запись строки в файл
file_put_contents("catalog.xml", $xml);

Обзор XMLReader и XMLWriter

 Модуль 3. XML Стр.96

 Extensible Stylesheet Language /Transformations
 Стилевая технология, предназначенная для трансформации XML-документов в

другие форматы
 Таблицы стилей XSL создаются по правилам XML-документов
 Таблицы стилей XSL состоят из набора шаблонов

// Загрузка исходного XML-документа
$xml = new DomDocument();
$xml->load("catalog.xml");

// Загрузка таблицы стилей XSL
$xsl = new DomDocument();
$xsl->load("catalog.xsl");

// Создание XSLT процессора
$processor = new XSLTProcessor();

// Загрузка XSL в процессор
$processor->importStylesheet($xsl);
// Выполнение преобразования
echo $processor->transformToXML($xml);

Преобразование XML c XSL/T

 Модуль 3. XML Стр.97

Познакомились с XML технологиями

Изучили основные средства для работы с XML-документом: DOM и SimpleXML

 Рассмотрели другие средства для работы с XML-документом
 Научились преобразовывать XML-документ в другие форматы

Что мы изучили?

 Модуль 3. XML Стр.98

Лабораторная работа 3.1

 Лабораторная работа 3.2

Лабораторные работы

 Модуль 3. XML Стр.99

Создание RSS с помощью DOM

Упражнение 1: Знакомство со структурой RSS-документа

• В текстовом редакторе откройте файл news\rss.txt и ознакомьтесь со
структурой RSS-документа

• В текстовом редакторе откройте файл news\NewsDB.class.php

• Добавьте константу класса RSS_NAME для хранения имени RSS-файла,
например, rss.xml

• Добавьте константу класса RSS_TITLE для хранения заголовка
новостной ленты, например, Последние новости

• Добавьте константу класса RSS_LINK для хранения ссылки на саму
новостную ленту - http://mysite.local/news/news.php

Упражнение 2: Создание метода для формирования RSS-
документа

• Создайте и опишите метод createRss(), который будет формироавть
RSS-документ

• Создайте объект $dom, экземпляр класса DOMDocument

• Напишите следующие строки для правильного форматирования
документа:
$dom->formatOutput = true;
$dom->preserveWhiteSpace = false;

• Создайте корневой элемент rss и привяжите его к объекту $dom

• Напишите следующие строки для создания атрибута version
корневого элемента:
$version = $dom->createAttribute("version");
$version->value = '2.0';
$rss->appendChild($version);

• Создайте элемент channel и привяжите его к корневому элементу

• Создайте элементы title и link, и привяжите их к элементу channel.
Содержимое элементов находится в константах RSS_TITLE и RSS_LINK

• Получите данные в виде массива из базы данных и дальнейшие
действия производите в цикле

Лабораторная работа 3.1

 Модуль 3. XML Стр.100

http://mysite.local/news/news.php

• Cоздайте новый XML-элемент item для очередной новости

• Cоздайте XML-элементы для всех данных новостной ленты (вместе с
текстовыми узлами): title, link, description, pubDate, category. Не
забудьте обернуть текст для элемента description секцией CDATA

• Привяжите созданные XML-элементы с данными к XML-элементу item

• Привяжите XML-элемент item к элементу channel

• Сохраните файл. Имя файла - константа RSS_NAME

• Вызовите метод createRss() после добавления новости в методе
saveNews()

• Сохраните файл news\NewsDB.class.php

Упражнение 3: Создание RSS-документа

• Запустите браузер

• Наберите в адресной строке браузера
http://mysite.local/news/news.php

• Добавьте запись в новостную ленту

• Убедитесь, что в папке news появился файл rss.xml

• Откройте файл news\rss.xml и убедитесь, что данные записаны
корректно

• Попробуйте добавить еще несколько записей в новостную ленту

• Если есть ошибки, найдите их и исправьте

 Модуль 3. XML Стр.101

http://mysite.local/news/news.php

Чтение RSS с помощью SimpleXML

Упражнение 1: Создание файла и кода для чтения RSS-документа

• В текстовом редакторе откройте файл news\rss_reader.php

• Пересохраните этот файл как C:\Users\Public\OpenServer\domains
\localhost\rss_reader.php

• Создайте константу RSS_URL для хранения адреса RSS-потока со
значением http://mysite.local/news/rss.xml

• Создайте константу FILE_NAME для хранения RSS-документа на
локальном сервере со значением news.xml

• Обычно новости обновляются с какой-либо периодичностью. Поэтому
нет необходимости каждую минуту (и даже секунду) дёргать файл с
удалённого сервера. Лучше закешировать данные у себя на
локальном сервере и обновлять их через определённый период.
Для этого создайте и опишите кеширующую функцию download(),
которая закачивает RSS-документ с адреса RSS_URL и сохраняет его на
локальном сервере под именем FILE_NAME

• Проверьте, существует ли файл на на локальном сервере? Если НЕТ,
то создайте его с помощью функции download()

•

○ Создайте объект - экземпляр класса SimpleXML и загрузите
документ

○ В цикле выведите в произвольной форме новостную ленту

После заголовка первого уровня Последние новости зачитайте с
помощью SimpleXML RSS-документ:

• Осуществите проверку на необходимость загрузки свежего RSS-файла
на локальный сервер с помощью функции download()

• Сохраните файл rss_reader.php

Упражнение 2: Чтение RSS-документа

• Запустите браузер

• Наберите в адресной строке браузера http://localhost/rss_reader.php

• Убедитесь, что в лента новостей выводится корректно

• Если есть ошибки, найдите их и исправьте

Лабораторная работа 3.2

 Модуль 3. XML Стр.102

http://mysite.local/news/rss.xml
http://localhost/rss_reader.php

PHP. Уровень 3
PHP и XML Web services

Модуль 4

 Модуль 4. XML Services Стр.103

Введение в XML Web services

История появления веб-служб

Использование расширения SOAP

Использование WSDL

Использование расширения XML-RPC

 Использование контекста потока

Темы модуля

 Модуль 4. XML Services Стр.104

 Программы, доступ к которым осуществляется
по протоколу HTTP

 Обмен данными происходит в формате XML
 Независимы от платформы
 Простоты в разработке и отладке
 Используются открытые протоколы и стандарты
 Есть возможность описать услуги,

предоставляемые службой и способы
обращения к ним

XML Web services

 Модуль 4. XML Services Стр.105

○ подход, позволяющий программе вызывать
процедуры из другого адресного
пространства

 Remote Procedure Call

 текстовый протокол на базе HTTP
(RFC-3529)

○ XML-RPC

 текстовый протокол на базе HTTP
(RFC-4227)

○ SOAP

 текстовый протокол на базе HTTP
(RFC-4627)

○ JSON-RPC

 бинарный протокол на базе TCP, UDP,
HTTP

○ .NET Remoting

 MSRPC Microsoft Remote Procedure Call

○ DCOM

○ Java RMI

 Реализации RPC

История появления веб-служб

 Модуль 4. XML Services Стр.106

Простой протокол доступа к объектам

Запросы посылаются HTTP методом POST

Envelope○

Header○

Body○

Структура SOAP сообщения:

SOAP запрос

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getStock xmlns="http://site.ru/ws">
<num>12345</num>

</getStock>
</soap:Body>

</soap:Envelope>

SOAP ответ

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<getStockDetailsResponse xmlns="http://site.ru/ws">

<getStockDetailsResult>
<id>12345</id>
<productName>Стакан граненый</productName>
<description>Стакан граненый. 250 мл.</description>
<price>9.95</price>

</getStockDetailsResult>
</getStockDetailsResponse>

</soap:Body>
</soap:Envelope>

Для работы необходимо подключить модуль php_soap.dll

SoapServer○

SoapClient○

Основные SOAP классы:

Simple Object Access Protocol

 Модуль 4. XML Services Стр.107

// Описание службы - процедурный интерфейс
$stock = [
 "a"=>100,
 "b"=>200,
 "c"=>300,
 "d"=>400,
 "e"=>500
];
function getStock($code){
 global $stock;
 if (isset($stock[$code]))
 return $stock[$code];
 return 0;
}

// Создание сервера
$server = new SoapServer("stock.wsdl");
// Добавление функции, которая будет видна клиенту
$server->addFunction("getStock");
// Обработка SOAP-запроса (запуск сервера)
$server->handle();

// Если функций больше, чем одна, то
$funcs = ["getStock", "setStock"];
$server->addFunction($funcs);

// Служба является классом, то
$server->setClass("StockService");

Создание SOAP сервера

 Модуль 4. XML Services Стр.108

Язык описания веб-служб

 WSDL документ - XML документ

Где находится служба○

Какие операции (функции) доступны клиенту○

Количество аргументов функций○

○ Типы аргументов функций
○ Типы возвращаемых функциями значений
○ Описание пользовательских типов для параметров функций

Описывает:

Web Services Description Language

 Модуль 4. XML Services Стр.109

// Создание сервера
$client = new SoapClient("stock.wsdl");
// Вызов удалённой процедуры
$amount = $server->getStock("b");
echo "Товаров на полке: $amount";

// Посмотреть список доступных операций
print_r($client->__getFunctions());

Создание SOAP клиента

 Модуль 4. XML Services Стр.110

Использование SOAP веб-службы

Лабораторная работа 4.1

 Модуль 4. XML Services Стр.111

 XML-RPC запрос
<methodCall>
<methodName>getStock</methodName>
<params>
<param>
<value><i4>3</i4></value>

</param>
</params>

</methodCall>

 XML-RPC ответ
<methodResponse>
<params>
<param>
<value><i4>300</i4></value>

</param>
<param>
<value><string>Sony Vayo</string></value>

</param>
</params>

</methodResponse>

 Подключить расширение php_xmlrpc.dll

 Создание XML-RPC сервера

// Описание службы
$stock = [
 "a"=>100,
 "b"=>200,
 "c"=>300,
 "d"=>400,
 "e"=>500
];

function get_stock($methodName, $arguments, $extra){
 global $stock;

Использование XML-RPC

 Модуль 4. XML Services Стр.112

 global $stock;
 $code = $arguments[0];
 if(is_set($stock[$code]))
 return $stock[$code];
 return ["faultCode" => 1, "faultString" => "Нет такой полки"];
}

// Создание сервера
$server = xmlrpc_server_create();
// Добавление функции, которая будет видна клиенту
xmlrpc_server_register_method($server, "getStock", "get_stock");
// Приём запроса
$request = file_get_contents("php://input");
// Обработка запроса
echo xmlrpc_server_call_method($server, $request, null);

 Создание XML-RPC клиента

// Создание запроса
$server = xmlrpc_encode_request("getStock", "b");
// XML-RPC запрос и получение ответа
$response = запрос_любым_способом_методом_POST("URL");
// Декодирование ответа
$result = xmlrpc_decode("URL");
if(xmlrpc_is_fault($result))
 echo $result["faultString"];
else
 echo $result;

 Модуль 4. XML Services Стр.113

// Формирование необходимых данных
$options = [
 "http"=> [
 "method" => "GET",
 "header" => "User-Agent: PHPBot\r\n".
 "Cookie: user=John\r\n"
]
];

// Создание контекста потока
$context = stream_context_create($options);

// Запрос с использованием созданного контекста потока
echo file_get_contents("http://mysite.local/xml-rpc/server.php", false, $context);

// Получение ответа при использовании fopen()
$f = fopen("http://mysite.local/xml-rpc/server.php", "r", false, $context);
echo stream_get_contents($f);

// Получение заголовков ответа
print_r(stream_get_meta_data($f));

Контекст потока

 Модуль 4. XML Services Стр.114

Использование XML-RPC службы

Лабораторная работа 4.2

 Модуль 4. XML Services Стр.115

Произвели обзор RPC

Научились создавать SOAP сервер

 Научились использовать WSDL
 Научились создавать SOAP клиента
 Рассмотрели использование XML-RPC

Что мы изучили?

 Модуль 4. XML Services Стр.116

Лабораторная работа 4.1

 Лабораторная работа 4.2

Лабораторные работы

 Модуль 4. XML Services Стр.117

Использование SOAP веб-службы

Упражнение 1: Создание SOAP-сервера

• В текстовом редакторе откройте файл soap\soap-server.php

• Ознакомьтесь с содержимым службы NewsService

• В нижней части файла после описания класса введите следующий
текст:
// Отключение кеширования wsdl-документа
ini_set("soap.wsdl_cache_enabled", "0");
// Создание SOAP-сервера
$server = new
SoapServer("http://mysite.local/soap/news.wsdl");
// Регистрация класса
$server->setClass("NewsService");
// Запуск сервера $server->handle();

• Сохраните файл soap\soap-server.php

Упражнение 2: Создание SOAP-клиента

• В текстовом редакторе откройте файл soap\soap-client.php

• Пересохраните этот файл как C:\Users\Public\OpenServer\domains
\localhost\soap-client.php

• В файле введите следующий текст:
$client = new
SoapClient("http://mysite.local/soap/news.wsdl");
try{
 // Сколько новостей всего?
 $result = $client->getNewsCount();
 echo "<p>Всего новостей: $result</p>";
 // Сколько новостей в категории Политика?
 $result = $client->getNewsCountByCat(1);
 echo "<p>Всего новостей в категории Политика:
$result</p>";
 // Покажем конкретную новость
 $result = $client->getNewsById(1);
 $news = unserialize(base64_decode($result));
 var_dump($news);
}catch(SoapFault $e){
 echo 'Операция '.$e->faultcode.' вернула ошибку: '.$e->
getMessage();
}

Лабораторная работа 4.1

 Модуль 4. XML Services Стр.118

}

• Сохраните файл soap-client.php

Упражнение 3: Тестирование сервиса

• Запустите браузер

• Наберите в адресной строке браузера http://localhost/soap-client.php

• Убедитесь, что данные выводятся корректно

• Если есть ошибки, найдите их и исправьте

• Попробуйте допустить намеренную ошибку в файле soap\soap-
server.php, например, укажите в SQL-запросе несуществующую
таблицу. Какие данные при этом будут выведены в браузер?

 Модуль 4. XML Services Стр.119

http://localhost/soap-client.php

Использование XML-RPC службы

Упражнение 1: Создание XML-RPC сервера

• В текстовом редакторе откройте файл xml-rpc\xml-rpc-server.php

• Ознакомьтесь с содержимым службы NewsService

• В нижней части файла после описания класса введите следующий
текст:
/* Читаем запрос */
$request = file_get_contents("php://input");
/* Создаем XML-RPC сервер */
$server = xmlrpc_server_create();
/* Регистрируем метод класса */
xmlrpc_server_register_method($server, "getNewsById", [new
NewsService, "xmlRpcGetNewsById"]);
/*Отдаем правильный заголовок*/
header('Content-Type: text/xml;charset=utf-8');
/* Отдаем результат */
print xmlrpc_server_call_method($server, $request, null);

• Сохраните файл xml-rpc\xml-rpc-server.php

Упражнение 2: Создание XML-RPC-клиента

• В текстовом редакторе откройте файл xml-rpc\xml-rpc-client.php

• Пересохраните этот файл как C:\Users\Public\OpenServer\domains
\localhost\xml-rpc-client.php

В файле введите следующий текст:
header('Content-Type: text/html;charset=utf-8');
/* Сюда приходят данные с сервера */
$output = [];
/* Основная функция */
function make_request($xml, &$output) {
 /* НАЧАЛО ЗАПРОСА */
 $options = [
 'http'=>[
 'method' => "POST",
 'header' => "User-Agent: PHPRPC/1.0\r\n" .
 "Content-Type: text/xml\r\n" .
 "Content-length: " . strlen($xml) . "\r
\n",
 'content' => "$xml"
]

•

Лабораторная работа 4.2

 Модуль 4. XML Services Стр.120

]
];
 $context = stream_context_create($options);
 $retval = file_get_contents('http://mysite.local/xml-
rpc/xml-rpc-server.php', false, $context);
 /* КОНЕЦ ЗАПРОСА */
 $data = xmlrpc_decode($retval);
 if (is_array($data) && xmlrpc_is_fault($data)){
 $output = $data;
 }else{
 $output = unserialize(base64_decode($data));
 }
}

/* Идентификатор статьи */
$id = 1;
$request_xml = xmlrpc_encode_request('getNewsById',
array($id));
make_request($request_xml, $output);
/* Вывод результата */
var_dump($output);

• Сохраните файл xml-rpc-client.php

Упражнение 3: Тестирование сервиса

• Запустите браузер и наберите в адресной строке браузера
http://localhost/xml-rpc-client.php

• Убедитесь, что данные выводятся корректно. Если есть ошибки,
найдите их и исправьте

• Попробуйте передать неверный идентификатор новости

• Попробуйте передать неправильное количество параметров

• Попробуйте допустить намеренную ошибку в файле xml-rpc\xml-rpc-
server.php, например, укажите в SQL-запросе несуществующую
таблицу

 Модуль 4. XML Services Стр.121

http://localhost/xml-rpc-client.php

PHP. Уровень 3
Сокеты и сетевые службы

Модуль 5

 Модуль 5. Сокеты Стр.122

Соединение с удалёнными узлами с
использованием сокетов



Сетевые функции

Темы модуля

 Модуль 5. Сокеты Стр.123

 Позволяют осуществить доступ к используемым сетевым
протоколам

○ Подключение к службе, для которой отсутствует
соответствующая обёртка (file wrapper)

○ Осуществление действий, невозможных при
использовании потоков, но возможных при
использовании сетевых протоколов

 Варианты использования:

// Создание сокета
$socket = fsockopen("mysite.local", $80, $errno, $errmsg, 30);

if(!$socket){
 echo "$errno : $errmsg";
}else{
 // Поготовка запроса
 $output = "HEAD /server.php HTTP/1.1\r\n";
 $output .= "Host: mysite.local\r\n";
 $output .= "Connection: close\r\n\r\n";

 // Посылаем запрос
 fwrite($socket, $output);

 // Читаем ответ
 while(!$feof($socket)){
 echo $fgets($socket);
 }
 // Закрываем сокет
 $fclose($socket);
}

Использование сокетов

 Модуль 5. Сокеты Стр.124

// Получаем имя хоста по ip-адресу
$host_name = getHostByAddr("127.0.0.0");

// Получаем ip-адрес по имени хоста
$ip_address = getHostByName("mysite.local");
// Получаем массив ip-адресов по имени хоста
$ip_addresses = getHostByNameL("mysite.local");

// Получаем номер порта по имени службы
$port = getServByName("http", "tcp");

// Получаем имя службы по номеру порта
$service = getServByPort(80, "tcp");

// Получаем DNS запись для указанного хоста
$dns_record = dns_get_record("mysite.local");
// Получаем MX запись для указанного хоста
$dns_record = getmxrr("mysite.local");
// Проверяем имя хоста на существование
$exists = checkdnsrr("mysite.local");

Сетевые функции

 Модуль 5. Сокеты Стр.125

Научились использовать сокеты

 Познакомились с сетевыми функциями

Что мы изучили?

 Модуль 5. Сокеты Стр.126

PHP. Уровень 3
Работа с графикой

Модуль 6

 Модуль 6. Графика Стр.127

 Введение в графические форматы
 Вопросы генерации графики на PHP
 Использование расширения GD2
 Базовые функции для работы с графикой

Темы модуля

 Модуль 6. Графика Стр.128

 В PHP можно генерировать изображения «на
лету»

 Или изменять уже существующие изображения

○ http://www.boutell.com/gd/
 Это можно сделать с помощью библиотеки GD2

 Необходимо подключить расширение
php_gd2.dll

○ GIF (< 1.6 и > 2.0.28)

○ JPEG (все версии)

○ PNG (> 1.6)

 Поддерживаемые форматы:

 Изображения можно сохранять на сервере
 Изображения можно напрямую отдавать

клиенту:

Работа с изображениями в PHP

 Модуль 6. Графика Стр.129

http://www.boutell.com/gd/

○
клиенту:

 Модуль 6. Графика Стр.130

// Создание изображения (256 цветов)
$img = imageCreate(500, 300);
// Создание полноцветного изображения
$img = imageCreateTrueColor(500, 300);

// Генерация изображения в формате GIF
 // Копируем на выход
 imageGif($img);
 // Сохраняем на диск
 imageGif($img, "logo.gif");

// Генерация изображения в формате PNG
 // Копируем на выход
 imagePng($img);
 // Сохраняем на диск
 imagePng($img, "logo.png");

// Генерация изображения в формате JPEG
 // Копируем на выход
 imageJpeg($img);
 imageJpeg($img, null, 75);
 // Сохраняем на диск
 imageJpeg($img, "logo.jpg", 75);

// Включение сглаживания
 imageAntiAlias($img, true);

// Выбор цвета
$color = imageColorAllocate($img, 255, 0, 0);

// Выбор прозрачного цвета (для формата GIF)
imageColorTransparent($img, $color);

// Заливка фона изображения
imageFill($img, 0, 0, $color);

// Отрисовка пикселя
imageSetPixel($img, 10, 10, $color);

// Отрисовка линии
imageLine($img, 20, 20, 80, 280, $color);

// Отрисовка прямоугольника
imageRectangle($img, 20, 20, 80, 280, $color);
// Отрисовка залитого прямоугольника
imageFilledRectangle($img, 20, 20, 80, 280, $color);

Базовые операции при работе с
изображениями

 Модуль 6. Графика Стр.131

imageFilledRectangle($img, 20, 20, 80, 280, $color);

// Отрисовка многоугольника
$points = [0, 0, 100, 200, 300, 200];
imagePolygon($img, $points, 3, $color);
// Отрисовка залитого многоугольника
imageFilledPolygon($img, $points, 3, $color);

// Отрисовка эллипса
imageEllipse($img, 200, 150, 300, 200, $color);
// Отрисовка залитого эллипса
imageFilledEllipse($img, 200, 150, 300, 200, $color);

// Отрисовка дуги
imageArc($img, 200, 150, 300, 200, 0, 40, $color);
// Отрисовка сектора
imageFilledArc($img, 200, 150, 300, 200, 0, 40, $color, IMG_ARC_PIE);
imageFilledArc($img, 200, 150, 300, 200, 0, 40, $color, IMG_ARC_CHORD);
imageFilledArc($img, 200, 150, 300, 200, 0, 40, $color,
 IMG_ARC_EDGED | IMG_ARC_NOFILL);

// Отрисовка текста
imageString($img, 3, 150, 200, "Текст", $color);

// Отрисовка первого символа текста
imageChar($img, 3, 150, 200, "Текст", $color);
// Отрисовка первого символа текста лежащего на левом боку
imageCharUp($img, 3, 150, 200, "Текст", $color);

// Продвинутая отрисовка текста
imageTtfText($img, 30, 10, 300, 150, $color, "Arial.ttf", "Текст");

// Использование существующего изображения
$img = imageCreateFromGif("picture.gif");
$img = imageCreateFromPng("picture.png");
$img = imageCreateFromJpeg("picture.jpg");
$img = imageCreateFromString($string);

// Установка толщины линии
imageSetThickness($img, 5);

// Использование стилей
$style = [$red, $red, $red, $black, $black, $black];
imageSetStyle($img, $style);
imageLine($img, 20, 20, 80, 280, IMG_COLOR_STYLED);

 Модуль 6. Графика Стр.132

Создание и использование CAPTCHA

Лабораторная работа 6

 Модуль 6. Графика Стр.133

 Познакомились с базовыми функциями для работы с изображениями
расширения GD2

Что мы изучили?

 Модуль 6. Графика Стр.134

Лабораторная работа 6

Лабораторные работы

 Модуль 6. Графика Стр.135

Создание и использование CAPTCHA

Уяснение задачи

• При загрузке файла gd\registration.php пользователю показывается
изображение, которое динамически формируется скриптом gd\noise-picture.php

• Пользователь вводит в текстовое поле веб-формы строку изображённую на
картинке и отправляет скрипту gd\registration.php

• В файле gd\registration.php введённые пользователем данные проверяются на
совпадение и выдаётся соответствующий ответ

• Необходимо реализовать создание картинки со случайной строкой и проверку
введённых пользователем данных

• Хранение случайной строки, сформированной для изображения с целью
проверки на соответствие введённых пользователем данных, реализовать через
механизм пользовательских сессий

Упражнение 1: Создание изображения

• В текстовом редакторе откройте файл gd\noise-picture.php

• Создайте изображение на основе файла images/noise.jpg

• Создайте цвет для рисования

• Включите сглаживание. Оно ухудшает распознавание текста на картинке
программным способом

○ На изображении помещается около 5-6 символов размером от 18 до 30 пт. с
расстоянием 40 пт. между символами

○ Начальные координаты для отрисовки строки по осям X и Y где-то 20 и 30
соответсвенно

• Рекомендуемые значения значения для отрисовки текста на изображении
noise.jpg:

• Сгенерируйте случайную уникальную строку любым способом, который придёт
вам в голову

• Используя цикл отрисуйте строку посимвольно используя шрифты из папки fonts

• Для каждого символа задайте случайные значение размера и угла наклона.
Можно поиграться шрифтами и цветами

• Отдайте полученный результат как jpeg-изображение с 50% сжатием

• Не забудьте сохранить сгенерированную строку в сессии

• Сохраните файл gd\noise-picture.php

Лабораторная работа 6

 Модуль 6. Графика Стр.136

• Сохраните файл gd\noise-picture.php

• Запустите браузер

• Наберите в адресной строке браузера http://mysite.local/gd/noise-picture.php

• Убедитесь, что изображение с символами выводится в браузер

• Если есть ошибки, найдите их и исправьте

Упражнение 2: Использование созданного изображения

• В тестовом редакторе откройте файл gd\registration.php

• Проверьте, была ли отправлена форма

• Проверьте, не отключен ли показ картинок в браузере пользователя. Если
отключен, сообщите ему об этом

• Проверьте введённые пользователем данные на соответствие с текстом на
изображении и сообщите ему о результате

• Сообщения для пользователя выводите внизу файла после HTML-формы

• Сохраните файл gd\registration.php

Упражнение 3: Тестирование CAPTCHA

• Запустите браузер

• Наберите в адресной строке браузера http://mysite.local/gd/registration.php

• Введите в тестовое поле символы, изображенные на картинке и отправьте
данные на сервер. После перезагрузки страницы вы должны увидеть
положительный ответ

• Введите в тестовое поле произволные символы и отправьте данные на сервер.
После перезагрузки страницы вы должны увидеть отрицательный ответ

• Попробуйте отключить показ картинок в браузере и перезапустите его. Что
произойдет после перезагрузки страницы?

 Модуль 6. Графика Стр.137

http://mysite.local/gd/registration.php
http://mysite.local/gd/registration.php

Документация PHP

Что почитать?

 Резюме Стр.138

http://php.net/docs.php

PHP. Уровень 4. Расширенные возможности PHP

Что дальше?

 Резюме Стр.139

http://www.specialist.ru/course/php4

