
M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

O F F I C I A L M I C R O S O F T L E A R N I N G P R O D U C T

20761B
Querying Data with Transact-SQL

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii Querying Data with Transact-SQL

Information in this document, including URL and other Internet Web site references, is subject to change
without notice. Unless otherwise noted, the example companies, organizations, products, domain names,
e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with
any real company, organization, product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the
user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

The names of manufacturers, products, or URLs are provided for informational purposes only and
Microsoft makes no representations and warranties, either expressed, implied, or statutory, regarding
these manufacturers or the use of the products with any Microsoft technologies. The inclusion of a
manufacturer or product does not imply endorsement of Microsoft of the manufacturer or product. Links
may be provided to third party sites. Such sites are not under the control of Microsoft and Microsoft is not
responsible for the contents of any linked site or any link contained in a linked site, or any changes or
updates to such sites. Microsoft is not responsible for webcasting or any other form of transmission
received from any linked site. Microsoft is providing these links to you only as a convenience, and the
inclusion of any link does not imply endorsement of Microsoft of the site or the products contained
therein.

© 2017 Microsoft Corporation. All rights reserved.

Microsoft and the trademarks listed at https://www.microsoft.com/en-
us/legal/intellectualproperty/trademarks/en-us.aspx are trademarks of the Microsoft group of companies. All
other trademarks are property of their respective owners.

Product Number: 20761B

Part Number (if applicable): X21-31969

Released: 02/2017

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

MICROSOFT LICENSE TERMS
MICROSOFT INSTRUCTOR-LED COURSEWARE

These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its
affiliates) and you. Please read them. They apply to your use of the content accompanying this agreement which
includes the media on which you received it, if any. These license terms also apply to Trainer Content and any
updates and supplements for the Licensed Content unless other terms accompany those items. If so, those terms
apply.

BY ACCESSING, DOWNLOADING OR USING THE LICENSED CONTENT, YOU ACCEPT THESE TERMS.
IF YOU DO NOT ACCEPT THEM, DO NOT ACCESS, DOWNLOAD OR USE THE LICENSED CONTENT.

If you comply with these license terms, you have the rights below for each license you acquire.

1. DEFINITIONS.

a. “Authorized Learning Center” means a Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, or such other entity as Microsoft may designate from time to time.

b. “Authorized Training Session” means the instructor-led training class using Microsoft Instructor-Led

Courseware conducted by a Trainer at or through an Authorized Learning Center.

c. “Classroom Device” means one (1) dedicated, secure computer that an Authorized Learning Center owns

or controls that is located at an Authorized Learning Center’s training facilities that meets or exceeds the
hardware level specified for the particular Microsoft Instructor-Led Courseware.

d. “End User” means an individual who is (i) duly enrolled in and attending an Authorized Training Session

or Private Training Session, (ii) an employee of a MPN Member, or (iii) a Microsoft full-time employee.

e. “Licensed Content” means the content accompanying this agreement which may include the Microsoft
Instructor-Led Courseware or Trainer Content.

f. “Microsoft Certified Trainer” or “MCT” means an individual who is (i) engaged to teach a training session
to End Users on behalf of an Authorized Learning Center or MPN Member, and (ii) currently certified as a
Microsoft Certified Trainer under the Microsoft Certification Program.

g. “Microsoft Instructor-Led Courseware” means the Microsoft-branded instructor-led training course that
educates IT professionals and developers on Microsoft technologies. A Microsoft Instructor-Led
Courseware title may be branded as MOC, Microsoft Dynamics or Microsoft Business Group courseware.

h. “Microsoft IT Academy Program Member” means an active member of the Microsoft IT Academy
Program.

i. “Microsoft Learning Competency Member” means an active member of the Microsoft Partner Network

program in good standing that currently holds the Learning Competency status.

j. “MOC” means the “Official Microsoft Learning Product” instructor-led courseware known as Microsoft

Official Course that educates IT professionals and developers on Microsoft technologies.

k. “MPN Member” means an active Microsoft Partner Network program member in good standing.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

l. “Personal Device” means one (1) personal computer, device, workstation or other digital electronic device
that you personally own or control that meets or exceeds the hardware level specified for the particular
Microsoft Instructor-Led Courseware.

m. “Private Training Session” means the instructor-led training classes provided by MPN Members for
corporate customers to teach a predefined learning objective using Microsoft Instructor-Led Courseware.
These classes are not advertised or promoted to the general public and class attendance is restricted to
individuals employed by or contracted by the corporate customer.

n. “Trainer” means (i) an academically accredited educator engaged by a Microsoft IT Academy Program

Member to teach an Authorized Training Session, and/or (ii) a MCT.

o. “Trainer Content” means the trainer version of the Microsoft Instructor-Led Courseware and additional
supplemental content designated solely for Trainers’ use to teach a training session using the Microsoft
Instructor-Led Courseware. Trainer Content may include Microsoft PowerPoint presentations, trainer
preparation guide, train the trainer materials, Microsoft One Note packs, classroom setup guide and Pre-
release course feedback form. To clarify, Trainer Content does not include any software, virtual hard
disks or virtual machines.

2. USE RIGHTS. The Licensed Content is licensed not sold. The Licensed Content is licensed on a one copy
per user basis, such that you must acquire a license for each individual that accesses or uses the Licensed
Content.

2.1 Below are five separate sets of use rights. Only one set of rights apply to you.

a. If you are a Microsoft IT Academy Program Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User who is enrolled in the Authorized Training Session, and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware being provided, or

2. provide one (1) End User with the unique redemption code and instructions on how they can
access one (1) digital version of the Microsoft Instructor-Led Courseware, or

3. provide one (1) Trainer with the unique redemption code and instructions on how they can
access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure each End User attending an Authorized Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized Training
Session,

v. you will ensure that each End User provided with the hard-copy version of the Microsoft Instructor-
Led Courseware will be presented with a copy of this agreement and each End User will agree that
their use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement
prior to providing them with the Microsoft Instructor-Led Courseware. Each individual will be required
to denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

vii. you will only use qualified Trainers who have in-depth knowledge of and experience with the
Microsoft technology that is the subject of the Microsoft Instructor-Led Courseware being taught for
all your Authorized Training Sessions,

viii. you will only deliver a maximum of 15 hours of training per week for each Authorized Training
Session that uses a MOC title, and

ix. you acknowledge that Trainers that are not MCTs will not have access to all of the trainer resources
for the Microsoft Instructor-Led Courseware.

b. If you are a Microsoft Learning Competency Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Authorized Training Session and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware provided, or

2. provide one (1) End User attending the Authorized Training Session with the unique redemption
code and instructions on how they can access one (1) digital version of the Microsoft Instructor-
Led Courseware, or

3. you will provide one (1) Trainer with the unique redemption code and instructions on how they
can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Authorized Training Session has their own valid

licensed copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized
Training Session,

v. you will ensure that each End User provided with a hard-copy version of the Microsoft Instructor-Led
Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for your Authorized Training
Sessions,

viii. you will only use qualified MCTs who also hold the applicable Microsoft Certification credential that is
the subject of the MOC title being taught for all your Authorized Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

c. If you are a MPN Member:
i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft

Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Private Training Session, and only immediately prior to the commencement
of the Private Training Session that is the subject matter of the Microsoft Instructor-Led
Courseware being provided, or

2. provide one (1) End User who is attending the Private Training Session with the unique
redemption code and instructions on how they can access one (1) digital version of the
Microsoft Instructor-Led Courseware, or

3. you will provide one (1) Trainer who is teaching the Private Training Session with the unique
redemption code and instructions on how they can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Private Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Private Training Session,
v. you will ensure that each End User provided with a hard copy version of the Microsoft Instructor-Led

Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Private Training Session has their own valid licensed
copy of the Trainer Content that is the subject of the Private Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for all your Private Training
Sessions,

viii. you will only use qualified MCTs who hold the applicable Microsoft Certification credential that is the
subject of the MOC title being taught for all your Private Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

d. If you are an End User:
For each license you acquire, you may use the Microsoft Instructor-Led Courseware solely for your
personal training use. If the Microsoft Instructor-Led Courseware is in digital format, you may access the
Microsoft Instructor-Led Courseware online using the unique redemption code provided to you by the
training provider and install and use one (1) copy of the Microsoft Instructor-Led Courseware on up to
three (3) Personal Devices. You may also print one (1) copy of the Microsoft Instructor-Led Courseware.
You may not install the Microsoft Instructor-Led Courseware on a device you do not own or control.

e. If you are a Trainer.
i. For each license you acquire, you may install and use one (1) copy of the Trainer Content in the

form provided to you on one (1) Personal Device solely to prepare and deliver an Authorized
Training Session or Private Training Session, and install one (1) additional copy on another Personal
Device as a backup copy, which may be used only to reinstall the Trainer Content. You may not
install or use a copy of the Trainer Content on a device you do not own or control. You may also
print one (1) copy of the Trainer Content solely to prepare for and deliver an Authorized Training
Session or Private Training Session.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

ii. You may customize the written portions of the Trainer Content that are logically associated with

instruction of a training session in accordance with the most recent version of the MCT agreement.
If you elect to exercise the foregoing rights, you agree to comply with the following: (i)
customizations may only be used for teaching Authorized Training Sessions and Private Training
Sessions, and (ii) all customizations will comply with this agreement. For clarity, any use of
“customize” refers only to changing the order of slides and content, and/or not using all the slides or
content, it does not mean changing or modifying any slide or content.

2.2 Separation of Components. The Licensed Content is licensed as a single unit and you may not
separate their components and install them on different devices.

2.3 Redistribution of Licensed Content. Except as expressly provided in the use rights above, you may
not distribute any Licensed Content or any portion thereof (including any permitted modifications) to any
third parties without the express written permission of Microsoft.

2.4 Third Party Notices. The Licensed Content may include third party code tent that Microsoft, not the
third party, licenses to you under this agreement. Notices, if any, for the third party code ntent are included
for your information only.

2.5 Additional Terms. Some Licensed Content may contain components with additional terms,
conditions, and licenses regarding its use. Any non-conflicting terms in those conditions and licenses also
apply to your use of that respective component and supplements the terms described in this agreement.

3. LICENSED CONTENT BASED ON PRE-RELEASE TECHNOLOGY. If the Licensed Content’s subject

matter is based on a pre-release version of Microsoft technology (“Pre-release”), then in addition to the
other provisions in this agreement, these terms also apply:

a. Pre-Release Licensed Content. This Licensed Content subject matter is on the Pre-release version of

the Microsoft technology. The technology may not work the way a final version of the technology will
and we may change the technology for the final version. We also may not release a final version.
Licensed Content based on the final version of the technology may not contain the same information as
the Licensed Content based on the Pre-release version. Microsoft is under no obligation to provide you
with any further content, including any Licensed Content based on the final version of the technology.

b. Feedback. If you agree to give feedback about the Licensed Content to Microsoft, either directly or

through its third party designee, you give to Microsoft without charge, the right to use, share and
commercialize your feedback in any way and for any purpose. You also give to third parties, without
charge, any patent rights needed for their products, technologies and services to use or interface with
any specific parts of a Microsoft technology, Microsoft product, or service that includes the feedback.
You will not give feedback that is subject to a license that requires Microsoft to license its technology,
technologies, or products to third parties because we include your feedback in them. These rights
survive this agreement.

c. Pre-release Term. If you are an Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, MPN Member or Trainer, you will cease using all copies of the Licensed Content on
the Pre-release technology upon (i) the date which Microsoft informs you is the end date for using the
Licensed Content on the Pre-release technology, or (ii) sixty (60) days after the commercial release of the
technology that is the subject of the Licensed Content, whichever is earliest (“Pre-release term”).
Upon expiration or termination of the Pre-release term, you will irretrievably delete and destroy all copies
of the Licensed Content in your possession or under your control.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

4. SCOPE OF LICENSE. The Licensed Content is licensed, not sold. This agreement only gives you some
rights to use the Licensed Content. Microsoft reserves all other rights. Unless applicable law gives you more
rights despite this limitation, you may use the Licensed Content only as expressly permitted in this
agreement. In doing so, you must comply with any technical limitations in the Licensed Content that only
allows you to use it in certain ways. Except as expressly permitted in this agreement, you may not:
• access or allow any individual to access the Licensed Content if they have not acquired a valid license

for the Licensed Content,
• alter, remove or obscure any copyright or other protective notices (including watermarks), branding

or identifications contained in the Licensed Content,
• modify or create a derivative work of any Licensed Content,
• publicly display, or make the Licensed Content available for others to access or use,
• copy, print, install, sell, publish, transmit, lend, adapt, reuse, link to or post, make available or

distribute the Licensed Content to any third party,
• work around any technical limitations in the Licensed Content, or
• reverse engineer, decompile, remove or otherwise thwart any protections or disassemble the

Licensed Content except and only to the extent that applicable law expressly permits, despite this
limitation.

5. RESERVATION OF RIGHTS AND OWNERSHIP. Microsoft reserves all rights not expressly granted to
you in this agreement. The Licensed Content is protected by copyright and other intellectual property laws
and treaties. Microsoft or its suppliers own the title, copyright, and other intellectual property rights in the
Licensed Content.

6. EXPORT RESTRICTIONS. The Licensed Content is subject to United States export laws and regulations.
You must comply with all domestic and international export laws and regulations that apply to the Licensed
Content. These laws include restrictions on destinations, end users and end use. For additional information,
see www.microsoft.com/exporting.

7. SUPPORT SERVICES. Because the Licensed Content is “as is”, we may not provide support services for it.

8. TERMINATION. Without prejudice to any other rights, Microsoft may terminate this agreement if you fail

to comply with the terms and conditions of this agreement. Upon termination of this agreement for any
reason, you will immediately stop all use of and delete and destroy all copies of the Licensed Content in
your possession or under your control.

9. LINKS TO THIRD PARTY SITES. You may link to third party sites through the use of the Licensed

Content. The third party sites are not under the control of Microsoft, and Microsoft is not responsible for
the contents of any third party sites, any links contained in third party sites, or any changes or updates to
third party sites. Microsoft is not responsible for webcasting or any other form of transmission received
from any third party sites. Microsoft is providing these links to third party sites to you only as a
convenience, and the inclusion of any link does not imply an endorsement by Microsoft of the third party
site.

10. ENTIRE AGREEMENT. This agreement, and any additional terms for the Trainer Content, updates and

supplements are the entire agreement for the Licensed Content, updates and supplements.

11. APPLICABLE LAW.

a. United States. If you acquired the Licensed Content in the United States, Washington state law governs
the interpretation of this agreement and applies to claims for breach of it, regardless of conflict of laws
principles. The laws of the state where you live govern all other claims, including claims under state
consumer protection laws, unfair competition laws, and in tort.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

b. Outside the United States. If you acquired the Licensed Content in any other country, the laws of that
country apply.

12. LEGAL EFFECT. This agreement describes certain legal rights. You may have other rights under the laws
of your country. You may also have rights with respect to the party from whom you acquired the Licensed
Content. This agreement does not change your rights under the laws of your country if the laws of your
country do not permit it to do so.

13. DISCLAIMER OF WARRANTY. THE LICENSED CONTENT IS LICENSED "AS-IS" AND "AS

AVAILABLE." YOU BEAR THE RISK OF USING IT. MICROSOFT AND ITS RESPECTIVE
AFFILIATES GIVES NO EXPRESS WARRANTIES, GUARANTEES, OR CONDITIONS. YOU MAY
HAVE ADDITIONAL CONSUMER RIGHTS UNDER YOUR LOCAL LAWS WHICH THIS AGREEMENT
CANNOT CHANGE. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAWS, MICROSOFT AND
ITS RESPECTIVE AFFILIATES EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

14. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES. YOU CAN RECOVER FROM

MICROSOFT, ITS RESPECTIVE AFFILIATES AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP
TO US$5.00. YOU CANNOT RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL,
LOST PROFITS, SPECIAL, INDIRECT OR INCIDENTAL DAMAGES.

This limitation applies to
o anything related to the Licensed Content, services, content (including code) on third party Internet

sites or third-party programs; and
o claims for breach of contract, breach of warranty, guarantee or condition, strict liability, negligence,

or other tort to the extent permitted by applicable law.

It also applies even if Microsoft knew or should have known about the possibility of the damages. The
above limitation or exclusion may not apply to you because your country may not allow the exclusion or
limitation of incidental, consequential or other damages.

Please note: As this Licensed Content is distributed in Quebec, Canada, some of the clauses in this
agreement are provided below in French.

Remarque : Ce le contenu sous licence étant distribué au Québec, Canada, certaines des clauses
dans ce contrat sont fournies ci-dessous en français.

EXONÉRATION DE GARANTIE. Le contenu sous licence visé par une licence est offert « tel quel ». Toute
utilisation de ce contenu sous licence est à votre seule risque et péril. Microsoft n’accorde aucune autre garantie
expresse. Vous pouvez bénéficier de droits additionnels en vertu du droit local sur la protection dues
consommateurs, que ce contrat ne peut modifier. La ou elles sont permises par le droit locale, les garanties
implicites de qualité marchande, d’adéquation à un usage particulier et d’absence de contrefaçon sont exclues.

LIMITATION DES DOMMAGES-INTÉRÊTS ET EXCLUSION DE RESPONSABILITÉ POUR LES
DOMMAGES. Vous pouvez obtenir de Microsoft et de ses fournisseurs une indemnisation en cas de dommages
directs uniquement à hauteur de 5,00 $ US. Vous ne pouvez prétendre à aucune indemnisation pour les autres
dommages, y compris les dommages spéciaux, indirects ou accessoires et pertes de bénéfices.
Cette limitation concerne:

• tout ce qui est relié au le contenu sous licence, aux services ou au contenu (y compris le code)
figurant sur des sites Internet tiers ou dans des programmes tiers; et.

• les réclamations au titre de violation de contrat ou de garantie, ou au titre de responsabilité
stricte, de négligence ou d’une autre faute dans la limite autorisée par la loi en vigueur.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Elle s’applique également, même si Microsoft connaissait ou devrait connaître l’éventualité d’un tel dommage. Si
votre pays n’autorise pas l’exclusion ou la limitation de responsabilité pour les dommages indirects, accessoires
ou de quelque nature que ce soit, il se peut que la limitation ou l’exclusion ci-dessus ne s’appliquera pas à votre
égard.

EFFET JURIDIQUE. Le présent contrat décrit certains droits juridiques. Vous pourriez avoir d’autres droits
prévus par les lois de votre pays. Le présent contrat ne modifie pas les droits que vous confèrent les lois de votre
pays si celles-ci ne le permettent pas.

Revised July 2013

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xi

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xii Querying Data with Transact-SQL

Acknowledgements
Microsoft Learning would like to acknowledge and thank the following for their contribution towards
developing this title. Their effort at various stages in the development has ensured that you have a good
classroom experience.

Aaron Johal – Content Developer
Aaron Johal is a Microsoft Certified Trainer who splits his time between training, consultancy, content
development, contracting and learning. Since he moved into the non-functional side of the Information
Technology business. He has presented technical sessions at SQL Pass in Denver and at sqlbits in London.
He has also taught and worked in a consulting capacity throughout the UK and abroad, including Africa,
Spain, Saudi Arabia, Netherlands, France, and Ireland. He enjoys interfacing functional and non-functional
roles to try and close the gaps between effective use of Information Technology and the needs of the
Business.

Caroline Eveleigh – Content Developer
Caroline Eveleigh is a Microsoft Certified Professional and SQL Server specialist. She has worked with SQL
Server since version 6.5 and, before that, with Microsoft Access and dBase. Caroline works on database
development and Microsoft Azure projects for both corporates, and small businesses. She is an
experienced business analyst, helping customers to re-engineer business processes, and improve decision
making using data analysis. Caroline is a trained technical author and a frequent blogger on project
management, business intelligence, and business efficiency. Between development projects, Caroline is a
keen SQL Server evangelist, speaking and training on SQL Server and Azure SQL Database.

Ed Harper – Content Developer
Ed Harper is a database developer specializing in Microsoft SQL Server. Ed has worked with SQL Server
since 1999, and has developed and designed transaction-processing and reporting systems for cloud
security, telecommunications, and financial services companies.

Jamie Newman – Content Developer
Jamie Newman became an IT trainer in 1997, first for an IT training company and later for a university,
where he became involved in developing courses as well as training them. He began to specialize in
databases and eventually moved into database consultancy. In recent years he has specialized in SQL
Server and has set up multi user systems that are accessed nationwide. Despite now being more involved
with development work, Jamie still likes to deliver IT training courses when the opportunity arises!

John Daisley – Content Developer
John Daisley is a mixed vendor Business Intelligence and Data Warehousing contractor with a wealth of
data warehousing and Microsoft SQL Server database administration experience. Having worked in the
Business Intelligence arena for over a decade, John has extensive experience of implementing business
intelligence and database solutions using a wide range of technologies and across a wide range of
industries including airlines, engineering, financial services, and manufacturing.

Nick Anderson – Content Developer
Nick Anderson MBCS MISTC has been a freelance Technical Writer since 1987 and Trainer since 1999. Nick
has written internal and external facing content in many business and technical areas including
development, infrastructure and finance projects involving SQL Server, Visual Studio and similar tools.
Nick provides services for both new and existing document processes from knowledge capture to
publishing.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xiii

Phil Stollery – Content Developer
Phil has been providing IT consultancy to South West England since graduating in Computer Science. He
has worked with small and large organizations to improve their use of SQL Server, predominantly focusing
on business information and surrounding technologies such as SharePoint. Most recently, Phil worked
with the National Health Service in Gloucestershire on a custom intranet built on SharePoint. A trusted
partner, he can communicate at all levels, from technical staff to senior management. Phil brings a wealth
of experience that enhances any project.

Rachel Horder – Content Developer
Rachel Horder graduated with a degree in Journalism and began her career in London writing for The
Times technology supplement. After discovering a love for programming, Rachel became a full-time
developer, and now provides SQL Server consultancy services to businesses across a wide variety of
industries. Rachel is MCSA certified, and continues to write technical articles and books, including What's
New in SQL Server 2012. As an active member of the SQL Server community, Rachel organizes the Bristol
SQL Server Club user group, runs the Bristol leg of SQL Relay, and is a volunteer at SQLBits.

Simon Butler – Content Developer
Simon Butler FISTC is a highly-experienced Senior Technical Writer with nearly 30 years' experience in the
profession. He has written training materials and other information products for several high-profile
clients. He is a Fellow of the Institute of Scientific and Technical Communicators (ISTC), the UK
professional body for Technical Writers/Authors. To gain this, his skills, experience and knowledge have
been judged and assessed by the Membership Panel. He is also a Past President of the Institute and has
been a tutor on the ISTC Open Learning course in Technical Communication techniques. His writing skills
are augmented by extensive technical skills gained within the computing and electronics fields.

Geoff Allix – Technical Reviewer
Geoff Allix is a Microsoft SQL Server subject matter expert and professional content developer at Content
Master—a division of CM Group Ltd. As a Microsoft Certified Trainer, Geoff has delivered training courses
on SQL Server since version 6.5. Geoff is a Microsoft Certified IT Professional for SQL Server and has
extensive experience in designing and implementing database and BI solutions on SQL Server
technologies, and has provided consultancy services to organizations seeking to implement and optimize
database solutions.

Lin Joyner – Technical Reviewer

Lin is an experienced Microsoft SQL Server developer and administrator. She has worked with SQL Server
since version 6.0 and previously as a Microsoft Certified Trainer, delivered training courses across the UK.
Lin has a wide breadth of knowledge across SQL Server technologies, including BI and Reporting Services.
Lin also designs and authors SQL Server and .NET development training materials. She has been writing
instructional content for Microsoft for over 15 years.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xiv Querying Data with Transact-SQL

Contents
Module 1: Introduction to Microsoft SQL Server 2016

Module Overview 1-1

Lesson 1: The Basic Architecture of SQL Server 1-2

Lesson 2: SQL Server Editions and Versions 1-6

Lesson 3: Getting Started with SQL Server Management Studio 1-9

Lab: Working with SQL Server 2016 Tools 1-16

Module Review and Takeaways 1-19

Module 2: Introduction to T-SQL Querying
Module Overview 2-1

Lesson 1: Introducing T-SQL 2-2

Lesson 2: Understanding Sets 2-12

Lesson 3: Understanding Predicate Logic 2-17

Lesson 4: Understanding the Logical Order of Operations in SELECT Statements 2-19

Lab: Introduction to T-SQL Querying 2-24

Module Review and Takeaways 2-27

Module 3: Writing SELECT Queries
Module Overview 3-1

Lesson 1: Writing Simple SELECT Statements 3-2

Lesson 2: Eliminating Duplicates with DISTINCT 3-6

Lesson 3: Using Column and Table Aliases 3-11

Lesson 4: Writing Simple CASE Expressions 3-16

Lab: Writing Basic SELECT Statements 3-19

Module Review and Takeaways 3-24

Module 4: Querying Multiple Tables
Module Overview 4-1

Lesson 1: Understanding Joins 4-2

Lesson 2: Querying with Inner Joins 4-7

Lesson 3: Querying with Outer Joins 4-11

Lesson 4: Querying with Cross Joins and Self Joins 4-15

Lab: Querying Multiple Tables 4-19

Module Review and Takeaways 4-24

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xv

Module 5: Sorting and Filtering Data
Module Overview 5-1

Lesson 1: Sorting Data 5-2

Lesson 2: Filtering Data with Predicates 5-6

Lesson 3: Filtering Data with TOP and OFFSET-FETCH 5-10

Lesson 4: Working with Unknown Values 5-16

Lab: Sorting and Filtering Data 5-20

Module Review and Takeaways 5-25

Module 6: Working with SQL Server 2016 Data Types
Module Overview 6-1

Lesson 1: Introducing SQL Server 2016 Data Types 6-2

Lesson 2: Working with Character Data 6-11

Lesson 3: Working with Date and Time Data 6-20

Lab: Working with SQL Server 2016 Data Types 6-26

Module Review and Takeaways 6-32

Module 7: Using DML to Modify Data
Module Overview 7-1

Lesson 1: Adding Data to Tables 7-2

Lesson 2: Modifying and Removing Data 7-8

Lesson 3: Generating Automatic Column Values 7-12

Lab: Using DML to Modify Data 7-15

Module Review and Takeaways 7-18

Module 8: Using Built-In Functions
Module Overview 8-1

Lesson 1: Writing Queries with Built-In Functions 8-2

Lesson 2: Using Conversion Functions 8-8

Lesson 3: Using Logical Functions 8-13

Lesson 4: Using Functions to Work with NULL 8-16

Lab: Using Built-in Functions 8-20

Module Review and Takeaways 8-24

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xvi Querying Data with Transact-SQL

Module 9: Grouping and Aggregating Data
Module Overview 9-1

Lesson 1: Using Aggregate Functions 9-2

Lesson 2: Using the GROUP BY Clause 9-9

Lesson 3: Filtering Groups with HAVING 9-15

Lab: Grouping and Aggregating Data 9-18

Module Review and Takeaways 9-24

Module 10: Using Subqueries
Module Overview 10-1

Lesson 1: Writing Self-Contained Subqueries 10-2

Lesson 2: Writing Correlated Subqueries 10-7

Lesson 3: Using the EXISTS Predicate with Subqueries 10-10

Lab: Using Subqueries 10-13

Module Review and Takeaways 10-18

Module 11: Using Table Expressions
Module Overview 11-1

Lesson 1: Using Views 11-2

Lesson 2: Using Inline TVFs 11-5

Lesson 3: Using Derived Tables 11-9

Lesson 4: Using CTEs 11-15

Lab: Using Table Expressions 11-18

Module Review and Takeaways 11-25

Module 12: Using Set Operators
Module Overview 12-1

Lesson 1: Writing Queries with the UNION Operator 12-2

Lesson 2: Using EXCEPT and INTERSECT 12-6

Lesson 3: Using APPLY 12-9

Lab: Using Set Operators 12-16

Module Review and Takeaways 12-21

Module 13: Using Window Ranking, Offset, and Aggregate Functions
Module Overview 13-1

Lesson 1: Creating Windows with OVER 13-2

Lesson 2: Exploring Window Functions 13-8

Lab: Using Window Ranking, Offset, and Aggregate Functions 13-16

Module Review and Takeaways 13-20

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xvii

Module 14: Pivoting and Grouping Sets
Module Overview 14-1

Lesson 1: Writing Queries with PIVOT and UNPIVOT 14-2

Lesson 2: Working with Grouping Sets 14-7

Lab: Pivoting and Grouping Sets 14-12

Module Review and Takeaways 14-18

Module 15: Executing Stored Procedures
Module Overview 15-1

Lesson 1: Querying Data with Stored Procedures 15-2

Lesson 2: Passing Parameters to Stored Procedures 15-5

Lesson 3: Creating Simple Stored Procedures 15-9

Lesson 4: Working with Dynamic SQL 15-12

Lab: Executing Stored Procedures 15-15

Module Review and Takeaways 15-21

Module 16: Programming with T-SQL
Module Overview 16-1

Lesson 1: T-SQL Programming Elements 16-2

Lesson 2: Controlling Program Flow 16-8

Lab: Programming with T-SQL 16-12

Module Review and Takeaways 16-18

Module 17: Implementing Error Handling
Module Overview 17-1

Lesson 1: Implementing T-SQL Error Handling 17-2

Lesson 2: Implementing Structured Exception Handling 17-7

Lab: Implementing Error Handling 17-11

Module Review and Takeaways 17-15

Module 18: Implementing Transactions
Module Overview 18-1

Lesson 1: Transactions and the Database Engine 18-2

Lesson 2: Controlling Transactions 18-7

Lab: Implementing Transactions 18-12

Module Review and Takeaways 18-16

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xviii Querying Data with Transact-SQL

Lab Answer Keys
Module 1 Lab: Working with SQL Server 2016 Tools L01-1

Module 2 Lab: Introduction to T-SQL Querying L02-1

Module 3 Lab: Writing Basic SELECT Statements L03-1

Module 4 Lab: Querying Multiple Tables L04-1

Module 5 Lab: Sorting and Filtering Data L05-1

Module 6 Lab: Working with SQL Server 2016 Data Types L06-1

Module 7 Lab: Using DML to Modify Data L07-1

Module 8 Lab: Using Built-in Functions L08-1

Module 9 Lab: Grouping and Aggregating Data L09-1

Module 10 Lab: Using Subqueries L10-1

Module 11 Lab: Using Table Expressions L11-1

Module 12 Lab: Using Set Operators L12-1

Module 13 Lab: Using Window Ranking, Offset, and Aggregate Functions L13-1

Module 14 Lab: Pivoting and Grouping Sets L14-1

Module 15 Lab: Executing Stored Procedures L15-1

Module 16 Lab: Programming with T-SQL L16-1

Module 17 Lab: Implementing Error Handling L17-1

Module 18 Lab: Implementing Transactions L18-1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
About This Course i

About This Course
This section provides a brief description of the course, audience, suggested prerequisites, and course
objectives.

Course Description

 Note: This release (‘B’) MOC version of course 20761 has been developed on RTM software.
This version supersedes 20761A.

The main purpose of this 5 day instructor led course is to give students a good understanding of the
Transact-SQL language which is used by all SQL Server-related disciplines; namely, Database
Administration, Database Development and Business Intelligence. As such, the primary target audience for
this course is: Database Administrators, Database Developers and BI professionals.

The course will very likely be well attended by SQL power users who aren’t necessarily database-focused;
namely, report writers, business analysts and client application developers.

Audience
This course is intended for Database Administrators, Database Developers, and Business Intelligence
professionals. The course will very likely be well attended by SQL power users who aren’t necessarily
database-focused; namely, report writers, business analysts and client application developers.

Student Prerequisites
This course requires that you meet the following prerequisites:

 Working knowledge of relational databases.

 Basic knowledge of the Microsoft Windows operating system and its core functionality.

Course Objectives
After completing this course, students will be able to:

 Describe the basic architecture and concepts of Microsoft SQL Server 2016

 Understand the similarities and differences between Transact-SQL and other computer languages

 Write SELECT queries

 Query multiple tables

 Sort and filter data

 Describe the use of data types in SQL Server

 Modify data using Transact-SQL

 Use built-in functions

 Group and aggregate data

 Use subqueries

 Use table expressions

 Use set operators

 Use window ranking, offset and aggregate functions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii About This Course

 Implement pivoting and grouping sets

 Execute stored procedures

 Program with T-SQL

 Implement error handling

 Implement transactions

Course Outline
The course outline is as follows:

Module 1, “Introduction to Microsoft SQL Server 2016"

Module 2, “Introduction to T-SQL Querying"

Module 3, “Writing SELECT Queries"

Module 4, “Querying Multiple Tables"

Module 5, “Sorting and Filtering Data"

Module 6, “Working with SQL Server 2016 Data Types"

Module 7, “Using DML to Modify Data"

Module 8, “Using Built-In Functions"

Module 9, “Grouping and Aggregating Data"

Module 10, “Using Subqueries"

Module 11, “Using Table Expressions"

Module 12, “Using Set Operators"

Module 13, “Using Windows Ranking, Offset, and Aggregate Functions"

Module 14, “Pivoting and Grouping Sets"

Module 15, “Executing Stored Procedures"

Module 16, “Programming with T-SQL"

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
About This Course iii

Course Materials
The following materials are included with your kit:

 Course Handbook: a succinct classroom learning guide that provides the critical technical
information in a crisp, tightly-focused format, which is essential for an effective in-class learning
experience.

o Lessons: guide you through the learning objectives and provide the key points that are critical to
the success of the in-class learning experience.

o Labs: provide a real-world, hands-on platform for you to apply the knowledge and skills learned
in the module.

o Module Reviews and Takeaways: provide on-the-job reference material to boost knowledge
and skills retention.

o Lab Answer Keys: provide step-by-step lab solution guidance.

 Additional Reading: Course Companion Content on the
http://www.microsoft.com/learning/en/us/companion-moc.aspx Site: searchable, easy-to-
browse digital content with integrated premium online resources that supplement the Course
Handbook.

 Modules: include companion content, such as questions and answers, detailed demo steps and
additional reading links, for each lesson. Additionally, they include Lab Review questions and answers
and Module Reviews and Takeaways sections, which contain the review questions and answers, best
practices, common issues and troubleshooting tips with answers, and real-world issues and scenarios
with answers.

 Resources: include well-categorized additional resources that give you immediate access to the most
current premium content on TechNet, MSDN®, or Microsoft® Press®.

 Additional Reading: Student Course files on the
http://www.microsoft.com/learning/en/us/companion-moc.aspx Site: includes the
Allfiles.exe, a self-extracting executable file that contains all required files for the labs and
demonstrations.

 Course evaluation: at the end of the course, you will have the opportunity to complete an online
evaluation to provide feedback on the course, training facility, and instructor.

o To provide additional comments or feedback on the course, send an email to
support@mscourseware.com. To inquire about the Microsoft Certification Program, send an
email to mcphelp@microsoft.com.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
iv About This Course

Virtual Machine Environment
This section provides the information for setting up the classroom environment to support the business
scenario of the course.

Virtual Machine Configuration
In this course, you will use Microsoft® Hyper-V™ to perform the labs.

 Note: At the end of each lab, you must revert the virtual machines to a snapshot. You can
find the instructions for this procedure at the end of each lab

The following table shows the role of each virtual machine that is used in this course:

Virtual machine Role

20761B-MIA-DCA Domain controller for the ADVENTUREWORKS
domain.

20761B-MIA-SQL SQL Server and SharePoint Server

Software Configuration
The following software is installed:

 Microsoft Windows Server 2012 R2

 Microsoft SQL Server 2016

 Microsoft Office 2016

 Microsoft SharePoint Server 2013

 Microsoft Visual Studio 2015

 Microsoft Visio 2013

Course Files
The files associated with the labs in this course are located in the D:\Labfiles folder on the 20761B-MIA-
SQL virtual machine.

Classroom Setup
Each classroom computer will have the same virtual machine configured in the same way.

Course Hardware Level
To ensure a satisfactory student experience, Microsoft Learning requires a minimum equipment
configuration for trainer and student computers in all Microsoft Certified Partner for Learning Solutions
(CPLS) classrooms in which Official Microsoft Learning Product courseware is taught.

Hardware Level 6+

 Intel Virtualization Technology (Intel VT) or AMD Virtualization (AMD-V) processor

 Dual 120 GB hard disks 7200 RM SATA or better*

 RAM: 12GB or higher. 16 GB or more is recommended for this course.

 DVD drive

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
About This Course v

 Network adapter with Internet connectivity

 Super VGA (SVGA) 17-inch monitor

 Microsoft Mouse or compatible pointing device

 Sound card with amplified speakers

*Striped

In addition, the instructor computer must be connected to a projection display device that supports SVGA
1024 x 768 pixels, 16 bit colors.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-1

Module 1
Introduction to Microsoft SQL Server 2016

Contents:
Module Overview 1-1

Lesson 1: The Basic Architecture of SQL Server 1-2

Lesson 2: SQL Server Editions and Versions 1-6

Lesson 3: Getting Started with SQL Server Management Studio 1-9

Lab: Working with SQL Server 2016 Tools 1-16

Module Review and Takeaways 1-19

Module Overview
This module provides an overview of Microsoft® SQL Server®, the data management software that stores
data securely. Before you start, it is helpful to understand the basic architecture of SQL Server 2016, the
different editions that are available, and a little about SQL Server Management Studio (SSMS). SSMS is one
of the tools you use to connect to instances of SQL Server, write queries, and view data returned by your
queries.

Objectives
After completing this module, you will be able to:

 Describe the architecture of SQL Server 2016.

 Describe the different editions of SQL Server 2016.

 Work with SSMS.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-2 Introduction to Microsoft SQL Server 2016

Lesson 1
The Basic Architecture of SQL Server

This lesson explains the basic architecture of Microsoft SQL Server, together with some key concepts. You
will learn about SQL Server instances, the services, and how databases are structured. This will help you
understand how SQL Server works before you start writing SQL Server queries.

Lesson Objectives
After completing this lesson, you will be able to describe:

 Relational databases in general, and specifically the role and structure of SQL Server databases.

 The sample database used in this course.

 What is meant by the client server model.

 The structure of Transact-SQL (T-SQL) queries.

Relational Databases

SQL Server 2016 is a data management system
that uses the relational model to store and
manage data. Relational databases store
information in tables—each table holds
information about just one thing. The information
may concern something tangible, such as
customer details, or intangible things such as
orders.

You could hold customer information in the
Customers table, but information about the goods
they order would be in a separate table called
Orders. This way of organizing data is efficient and
removes redundant information. However, someone might ask to see all the orders placed by a particular
customer. You use SQL Server to get this information by relating these tables to one another. You can
then join the two tables together in a query to produce a list of all orders placed by a particular customer.

Databases typically have many different tables related to one another, so you often need to join several
tables to obtain the information. For example, you might want to see the orders for customers who buy
from one of your salespeople. You can do this by joining the Customers table, the Salesperson table, and
the Orders table.

In addition to the databases that are created to store information, SQL Server includes five system
databases:

 master: the system configuration database.

 model: the template database. SQL Server will apply any changes made in model to new databases.

 msdb: used by SQL Server Agent to schedule jobs and alerts.

 tempDb: a temporary store for data such as work tables. This database is dropped and recreated
each time SQL Server restarts, which means that any temporary tables will be lost when SQL Server
closes down.

 resource: a hidden, read-only database that contains all the system objects for other databases.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-3

SQL Server databases contain data and objects, including tables, views, stored procedures, user accounts,
and other management objects. Before you can execute queries, or insert or delete information from a
database, you must connect to the database. You need security credentials to log on to SQL Server, and a
database account with permissions to access data objects.

About the Course Sample Database

To understand how queries work, you will be using
a database called TSQL. This is a small database
suitable for learning how to write Transact-SQL
queries. TSQL contains several types of objects:

 Schemas. These are logical containers for
tables and views.

 Tables. These mostly relate to one another
using Foreign Key constraints.

 Views. These display information from more
than one table.

The TSQL database is a simple sales application for a small business. Some of the tables you will be
working with include:

 Sales.Orders. This table stores invoice header information, such as a unique reference for the order,
the customer who placed the order, and the date of the order.

 Sales.OrderDetails. This table stores transaction details about each order, such as products ordered,
and the price.

 Sales.Customers. This table stores information about customers, such as company name, and contact
details.

 HR.Employees. This table stores employee information.

Client Server Databases

SQL Server is a client server system. This means
that the client software, which includes SQL Server
Management Studio and Visual Studio®, is
separate from the SQL Server Database Engine.

When the client application sends requests to the
database engine as T-SQL statements, SQL Server
performs the necessary file access, memory
management, and processor utilization on behalf
of the client. The client never has direct access to
database files—unlike, for example, a desktop
database application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-4 Introduction to Microsoft SQL Server 2016

In this course, the client and server software are running on the same virtual machine but, in production
environments, the client software runs on a separate machine to the database engine. Indeed, there could
be multiple clients accessing the same server database engine.

Wherever the client and server software is located, it makes no difference to the way you write T-SQL
code. On the logon screen, you just specify the SQL Server that you want to connect to.

You can also refer to other databases in a T-SQL script by using its four-part name. A four-part name has
the format Instance.Database.Schema.Object. For example, the four-part name MIA-
SQL.sales.dbo.orders refers to the orders table, in the dbo schema, in the sales database, on the MIA-
SQL server’s default instance.

Connecting to a remote server requires the remote instance to be set up as a linked server. In T-SQL, you
add a linked server using sp_addlinkedserver. Although sp_addlinkedserver takes a number of optional
arguments, in its simplest form you could connect to the server in the previous example using the
statement exec sp_addlinkedserver in ‘MIA-SQL’.

Queries

T-SQL is a set-based language, which means it
does not extract data row by row, but instead
extracts data from tables that normally contain
many rows. Only after it has retrieved the table
does SQL Server filter data to produce a subset of
the table, if that is what the query has requested.
This makes SQL Server highly efficient in dealing
with large volumes of data, but it means you have
to think in sets to write efficient T-SQL code.

T-SQL scripts are stored in script files with a .sql
extension. Inside each file, you can divide the
script into batches, each batch concluding with
the GO keyword. SQL Server runs each batch in its entirety before it starts the next one. This is important
if you are relying on things happening in a specific order. For example, you must create a table before you
can populate the table with data. To complete these two steps within the same script file, you must
specify the table structure first, and then add data to the table. If you try to create the table and populate
it with data without the GO keyword in between, the statement will fail. It will succeed only when the GO
keyword completes the first CREATE TABLE statement before the INSERT INTO statement populates the
table with data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-5

Sequencing Activity
Put the following T-SQL commands in order by numbering each to create a script that will execute
without errors:

 Steps

 CREATE TABLE HR.Employees
(
EmployeeID int PRIMARY KEY,
LastName nvarchar(25),
FirstName nvarchar(25)
);

 GO

 INSERT INTO HR.Employees
(
EmployeeID, LastName, FirstName
)
VALUES
(121, N’O’’Neill, N‘Carlene’);

 GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-6 Introduction to Microsoft SQL Server 2016

Lesson 2
SQL Server Editions and Versions

In this lesson, you will learn about the editions and versions of Microsoft SQL Server. You will learn about
the different editions of SQL Server 2016 that are available, their distinguishing features, and which
edition might be best when planning a new deployment.

Lesson Objectives
After completing this lesson, you will be able to describe:

 The versions of SQL Server.

 The editions of SQL Server 2016.

SQL Server Versions

SQL Server 2016 is the latest version in SQL
Server’s development. Since it was first developed
in 1989 for the OS/2 operating system, SQL Server
has gone through a number of major releases. SQL
Server 4.2 and later versions were developed to
run on Windows®.

The SQL Server Database Engine had major
enhancements for version 7.0 and all subsequent
versions have continued to extend and improve
SQL Server functionality, making it suitable for
workgroup and enterprise use.

SQL Server 2016 is a major new release with
enhanced security, support for hybrid cloud installations, and major improvements in the analytics
functionality.

 Note: Although the name may suggest otherwise, SQL Server 2008 R2 is not a service pack
for SQL Server 2008. SLQ Server 2008 R2 is an independent version (number 10.5) with enhanced
multiserver management capabilities, in addition to new business intelligence (BI) features.

Question: Which version of SQL Server are you currently working with? Have you worked
with any earlier versions?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-7

SQL Server Editions

SQL Server is available in different editions with
different feature sets that target various business
scenarios. In the SQL Server 2012 release,
Microsoft streamlined the number of editions from
previous versions. Four main editions are available:

 Enterprise. This is SQL Server’s flagship
edition containing all features, including
Business Intelligence, support for data
warehousing, and high availability.

 Standard. This includes the database engine,
as well as core reporting and analytics
capabilities. Standard supports 16 processor
cores but does not include all the high availability, security, and data warehousing features found in
the Enterprise edition.

 Business Intelligence. This includes the core database engine, along with the full Business
Intelligence functionality of analytics, reporting, and integration services. However, like the Standard
edition, it supports 16 processor cores and does not offer all the high availability, security, and data
warehousing features of the Enterprise edition.

 Express. This is a free version of SQL Server and is limited to four processor cores, 1 GB of memory
per instance, and 10 GB maximum storage per database.

This course uses features that are found in all editions.

In addition to the editions described above, SQL Server also runs in the cloud, in one of two ways:

 You can install SQL Server on a cloud-based virtual machine that your organization has provisioned
and integrated with its infrastructure. When properly set up, SQL Server works as if it were on a server
on your network.

 Secondly, it could be an Azure SQL Database. This is Software as a Service (SaaS) and allows you to
use SQL Server without a physical server or a cloud-based virtual machine. You can add or remove
performance as required, making this a highly scalable option.

 Additional Reading: For more information on the use of T-SQL on Microsoft Azure SQL
Server Database, see the MSDN article Azure SQL Database Transact-SQL Information at:
https://azure.microsoft.com/en-gb/documentation/articles/sql-database-transact-sql-
information/

Microsoft Azure SQL Server Database

http://aka.ms/ybpqh8

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-8 Introduction to Microsoft SQL Server 2016

Check Your Knowledge

Question

You have founded a new company with two friends. Your new application (app) uses a SQL Server
database to store information. You are unsure whether your app will be successful but, if it is, you
will need both high performance and space for large volumes of data. However, you have not yet
launched, so are unsure how many people will use your app. Which edition of SQL Server 2016
should you use for this system?

Select the correct answer.

 Azure SQL Database

 Enterprise edition

 Express edition

 Business Intelligence edition

 Any edition is appropriate for these requirements

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-9

Lesson 3
Getting Started with SQL Server Management Studio

In this lesson, you will learn how to use SQL Server Management Studio (SSMS) to connect to an instance
of SQL Server. You will explore the databases contained in the instance and work with script files
containing T-SQL queries.

Lesson Objectives
After completing this lesson you will be able to:

 Start SSMS.

 Use SSMS to connect to on-premises SQL Server instances.

 Explore a SQL Server instance using Object Explorer.

 Create and organize script files.

 Execute T-SQL queries.

 Use SQL Server 2016 Technical Documentation.

Starting SSMS

SSMS is an integrated management, development,
and querying application that has many features
for exploring and working with your databases.
Microsoft based SSMS on the Visual Studio shell; if
you know Visual Studio, you will most likely feel
comfortable using SSMS.

You can start SSMS in one of two ways:

 Use the SSMS shortcut on the Windows Start
menu.

 Type ssms.exe in a command prompt
window.

By default, SSMS will display a Connect to Server dialog box where you can specify the server (or instance)
name, together with your security credentials. To specify the database you want to connect to, click the
Options button to open the Connection properties dialog box. Alternatively, you can select the database
after you have connected.

You can explore many SSMS features without connecting to a SQL Server instance. You can also cancel
the Connect to Server dialog box if you want to connect to a server later.

With SSMS running, you can explore some of its settings found in Tools, Options. You can change the
default font, enable line numbering for scripts, and control the behavior of its many windows.

For more information on using SSMS, see Use SQL Server Management Studio in SQL Server 2016
Technical Documentation.

Use SQL Server Management Studio

http://aka.ms/cbalxi

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-10 Introduction to Microsoft SQL Server 2016

Connecting to SQL Server

To connect to an instance of SQL Server, you need
to specify several items, regardless of how you
connect:

 The instance you want to connect to. This
must be in the format:
hostname\instancename.

 For example, MIA-SQL\Proseware would
connect to the Proseware instance on the
Windows server named MIA-SQL. If you are
connecting to the default instance, you may
omit the instance name.

 The name of the database. If you do not specify a database, you will connect to the default database
designated by the database administrator. If no default is assigned, you will connect to the master
database.

Question: In your organization, which authentication method do you use to log on to SQL
Server?

Working with Object Explorer

Object Explorer is a graphical tool for managing
SQL Server instances and databases. It is one of
several SSMS windows available from the View
menu. Object Explorer provides direct interaction
with most SQL Server data objects such as tables,
views, and stored procedures. To display context-
sensitive help for an object in the tree view, right-
click an object, such as a table. The available
options include query and script generators for
object definitions.

 Note: Operations performed in SSMS
require appropriate permissions granted by a database administrator. Being able to see an object
or command does not necessarily imply permission to use the object or issue the command.

Use Object Explorer to learn about the structure and definition of data objects you want to use in your
queries. For example, to see the names of the columns in a table:

1. Connect to SQL Server, if necessary.

2. Expand the Databases folder to display the list of databases.

3. Expand the relevant database to display the Tables folder.

4. Expand the Tables folder to display the list of tables in the database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-11

5. Locate the relevant table and expand it to find the Columns folder.

6. The Columns folder displays the names, data types, constraints, and other information about the
column definition.

7. To avoid typing, drag an object from the Object Explorer hierarchy into the query window.

 Note: Selecting objects in the Object Explorer pane does not change any connections
made in other windows.

Script Files and Projects

SSMS allows you to create and save T-SQL code in
text files with a .sql file extension. Like other
Windows applications that open, edit, and save
files, SSMS has both a File menu and toolbar
buttons.

In addition to working on individual script files,
SSMS lets you organize files into solutions and
projects. You can keep scripts for one project
together, saving time by opening or closing all the
files at the same time. You can open solutions,
projects, or script files from SSMS or File Explorer.

Object Parent Description

Solution - A solution is a conceptual container for projects. Solutions have
a .ssmssln extension, and are always displayed at the top of the
hierarchy.

Project Solution Projects contain queries (T-SQL scripts), database connection
metadata, and other miscellaneous files. You can file any
number of projects within a solution. Projects have
a .ssmssqlproj extension.

Script Project T-SQL script files with a .sql extension are the basic files used to
work with SQL Server.

To create a new solution, click the File menu and click New Project. There is no “New Solution” command;
if you want a new solution, select Create New Solution in the New Project dialog box. Type the name for
the project, the parent solution, and whether you want the project to be stored in a subfolder within the
solution. Click OK to create the objects.

You can view solutions and projects by opening the View menu, and selecting Solution Explorer. Solution
Explorer displays a hierarchical list of all the solutions and projects you have created.

To create a new script that will be stored as part of a project, right-click the Queries folder in the Project
and select New Query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-12 Introduction to Microsoft SQL Server 2016

 Note: When you create a new query using the toolbar button or the New Query command
on the File menu, the script file is stored in the Miscellaneous Files folder by default. Use the Save
As menu option to save the file in your preferred location. You can drag files from the
Miscellaneous Files folder to specific projects, using Solution Explorer to put a copy of the file
into a specific project folder. Alternatively, you can move the file by holding the Alt key as you
drag.

Remember to save the solution when exiting SSMS, or when opening another solution. When you save a
script using the Save toolbar button or the Save <queryname>.sql command on the File menu, you are
only saving changes to the current script file. To save the solution and its contents, use the Save All
command on the File menu or, when prompted, save the .ssmssln and .ssmssqlproj files on exit.

Executing Queries

To execute T-SQL code in SSMS, open the .sql file
that contains the query, or type your query into a
new query window. You can either run all of the
script or part of it:

 Select the portion of code you wish to
execute.

 If you do not select anything, the entire script
will run.

When you have decided what you wish to execute,
run the code by either:

 Clicking the Execute button on the SSMS
toolbar.

 Clicking the Query menu, and then clicking Execute.

 Pressing the F5 key, the Alt+X keyboard shortcut, or the Ctrl+E keyboard shortcut.

By default, SSMS will display the results in a new pane of the query window. To change the location and
appearance of the results, click Tools, and then click Options. CTRL-R toggles between a full screen T-SQL
editor, and the T-SQL editor plus the results pane.

SSMS enables results to be displayed in three different ways:

 Grid. A spreadsheet-like view, with row numbers and columns you can resize. Use Ctrl+D to select
Grid layout before executing the query.

 Text. A Windows Notepad-like display that pads column widths. Use Ctrl+T to select text layout
before executing the query.

 File. Saves query results to a text file with a .rpt extension. When you execute the query, you will be
prompted for a location to save the file. You can then open the file with any application that reads
text files, such as Windows Notepad and SSMS. To send results to file, use the keyboard shortcut Ctrl-
Shift-F before running the query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-13

 Note: The shortcut to display results as text has changed in SQL Server 2016. It is now
Ctrl+T. It used to be Ctrl+F.

 Additional Reading: For a list of keyboard shortcuts available in SSMS, see SQL Server
Management Studio Keyboard Shortcuts, in MSDN.

MSDN SQL Server Management Studio Keyboard Shortcuts

http://aka.ms/y83i8i

Using SQL Server 2016 Technical Documentation

SQL Server 2016 Technical Documentation
(sometimes abbreviated to BOL) is the product
documentation for SQL Server. BOL includes
helpful information on SQL Server’s architecture
and concepts, in addition to syntax reference for
T-SQL. You can start BOL from the Help menu in
SSMS, or from the query window. For context-
sensitive help for T-SQL keywords, select the
keyword and press F1.

You can also view SQL Server 2016 Technical
Documentation on the Microsoft website.

SQL Server 2016 Technical Documentation

http://aka.ms/dxlgjb

 Note: Before SQL Server 2014, there was a setup option to install SQL Server Books Online
locally. In SQL Server 2016, you must download and install SQL Server 2016 Technical
Documentation separately.

The first time you invoke Help, you will be prompted to specify whether you want to view SQL Server
2016 Technical Documentation content locally or online. When you work with online help, you will always
access the latest information.

For detailed instructions on how to download, install, and configure SQL Server 2016 Technical
Documentation for local offline use, see Get Started with Product Documentation for SQL Server.

Get Started with Product Documentation for SQL Server

http://aka.ms/tgv2o6

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-14 Introduction to Microsoft SQL Server 2016

Demonstration: Introducing Microsoft SQL Server 2016

In this demonstration you will see how to:

 Use SSMS to connect to an on-premises instance of SQL Server.

 Explore databases and other objects.

 Work with T-SQL scripts.

Demonstration Steps
Use SSMS to Connect to an On-premises instance of SQL Server 2016

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are running.

2. Log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

3. In the D:\Demofiles\Mod01 folder, right-click Setup.cmd, and then click Run as administrator.

4. In the User Account Control dialog box, click Yes, press y when prompted, and then press Enter.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

Explore Database and Other Objects

1. In Object Explorer, expand the Databases folder to see a list of databases.

2. Expand the TSQL database.

3. Expand the Tables folder.

4. Expand the Sales.Customers table.

5. Expand the Columns folders.

6. View the list of columns, and the data type information for each column.

7. Note the data type for the companyname column.

Work with T-SQL Scripts

1. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

2. In Solution Explorer, notice it will is empty.

3. On the File menu, point to New, and then click Project.

4. In the New Project dialog box, under Installed, click SQL Server Management Studio Projects.

5. In the middle pane, click SQL Server Scripts.

6. In the Name box, type Module 1 Demonstration.

7. In the Location box, type D:\Demofiles\Mod01.

8. Point out the solution name, and then click OK.

9. In Solution Explorer, right-click Queries, and click New Query.

10. Type the following T-SQL code:

USE TSQL;
GO
SELECT CustID, ShipCountry
FROM Sales.Orders;

11. Select the code and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-15

12. Point out the Results pane.

13. On the File menu, click Save All.

14. On the File menu, click Close Solution.

15. On the File menu, point to Recent Projects and Solutions, and then click 1 D:\...\ Module 1
Demonstration\Module 1 Demonstration.ssmssln.

16. Point out the Solution Explorer pane.

17. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Question

A colleague has asked you to run some test queries against the company’s scheduling
database. Administrators have given you the name of the server where the database is hosted,
and the name of the database. Permissions to run the necessary queries have been granted to
your Active Directory® account. You are logged on to a client computer with this Active
Directory account and have started SQL Server Management Studio. What other information
do you need to connect to the database?

Select the correct answer.

 Your Active Directory account username.

 Your Active Directory account password.

 The name of the login created for you in the SQL Server instance.

 The name of the instance that hosts the database.

 The name of the user created for you in the SQL Server database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-16 Introduction to Microsoft SQL Server 2016

Lab: Working with SQL Server 2016 Tools
Scenario
The Adventure Works Cycles Bicycle Manufacturing Company has adopted SQL Server 2016 as its
relational database management system. You need to retrieve business data from several SQL Server
databases. In the lab, you will begin to explore the new environment, and become acquainted with the
tools for querying SQL Server.

Objectives
After completing this lab you will be able to:

 Use SQL Server Management Studio.

 Create and organize T-SQL scripts.

 Use SQL Server 2016 Technical Documentation.

Estimated Time: 30 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Working with SQL Server Management Studio

Scenario
You have been tasked with writing queries for SQL Server. Initially, you want to become familiar with the
development environment. You have therefore decided to explore SQL Server Management Studio and
configure the editor for your use.

The main tasks for this exercise are as follows:

1. Open Microsoft SQL Server Management Studio

2. Configure the Editor Settings

 Task 1: Open Microsoft SQL Server Management Studio
1. Start SSMS but do not connect to an instance of SQL Server.

2. Close the Object Explorer and Solution Explorer windows.

3. Using the View menu, show the Object Explorer and Solution Explorer windows in SSMS.

 Task 2: Configure the Editor Settings
1. With SSMS running, open the Tools menu and choose Options. Change the text editor font size to

14 points.

2. Change additional settings in Options:

o Disable IntelliSense.

o Change the tab indent to 6 spaces.

o Include column headers when copying the result set from the grid. Select Query Results, SQL
Server, Results to Grid. Select Include column headers when copying or saving the results.

Results: After this exercise, you should have opened SSMS and configured editor settings.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-17

Exercise 2: Creating and Organizing T-SQL Scripts

Scenario
You have decided to organize your T-SQL scripts in a project folder. In this lab, you will practice how to
create a project and add query files to it.

The main tasks for this exercise are as follows:

1. Create a Project

2. Add an Additional Query File

3. Reopen the Created Project

 Task 1: Create a Project
1. Create a new project called MyFirstProject and save it in the folder D:\Labfiles\Lab01\Starter.

2. Add a new query called MyFirstQueryFile.sql to MyFirstProject.

3. Save the project and the query file by clicking Save All.

 Task 2: Add an Additional Query File
1. Add an additional query file called MySecondQueryFile.sql to the project you created.

2. Open File Explorer, navigate to the MyFirstProject folder to check that your second query file is in
your project folder.

3. In SSMS, use the Solution Explorer pane to remove MySecondQueryFile.sql from your project by
choosing the Remove option. (Not the Delete option.)

4. In File Explorer, check to see whether the second query file is still in the project folder.

5. In SSMS, remove MyFirstQueryFile.sql by choosing Delete.

6. To see the difference, check in File Explorer.

 Task 3: Reopen the Created Project
1. Save the project, close SSMS, reopen SSMS, and open the project MyFirstProject.

2. Drag MySecondQueryFile.sql from File Explorer to the Queries folder beneath MyFirstProject in
SSMS Solution Explorer.

3. Save the project.

Results: After this lab exercise, you will have a basic understanding of how to create a project in SSMS
and add T-SQL query files to it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-18 Introduction to Microsoft SQL Server 2016

Exercise 3: Using SQL Server 2016 Technical Documentation

Scenario
To be effective in your upcoming training and exercises, you will practice using SQL Server 2016 Technical
Documentation to check T-SQL syntax.

The main tasks for this exercise are as follows:

1. Launch SQL Server 2016 Technical Documentation

2. Use SQL Server 2016 Technical Documentation

 Task 1: Launch SQL Server 2016 Technical Documentation
1. Launch Manage Help Settings from the Windows Start screen.

2. Configure SQL Server 2016 Technical Documentation to use the online option, not local help.

 Task 2: Use SQL Server 2016 Technical Documentation
 Use SQL Server 2016 Technical Documentation to find information about what’s new in the SQL

Server 2016 Database Engine.

Results: After this exercise, you will understand how to find the information you need in SQL Server 2016
Technical Documentation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-19

Module Review and Takeaways
In this module, you have learned how to:

 Describe the architecture of SQL Server 2016.

 Describe the different editions of SQL Server 2016.

 Work with SSMS.

Review Question(s)

Question: Can a SQL Server database be stored across multiple instances?

Question: If no T-SQL code is selected in a query window, which code lines will be run when
you click the Execute button?

Question: What does a SQL Server Management Studio solution contain?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-1

Module 2
Introduction to T-SQL Querying

Contents:
Module Overview 2-1

Lesson 1: Introducing T-SQL 2-2

Lesson 2: Understanding Sets 2-12

Lesson 3: Understanding Predicate Logic 2-17

Lesson 4: Understanding the Logical Order of Operations in SELECT Statements 2-19

Lab: Introduction to T-SQL Querying 2-24

Module Review and Takeaways 2-27

Module Overview
Transact-SQL, or T-SQL, is the language you will use to interact with Microsoft® SQL Server® 2016. In this
module, you will learn that T-SQL has many elements in common with other computer languages, such as
commands, variables, loops, functions, and operators. You will also learn that designing your queries to
take sets into account means SQL Server will perform at its best. To make the most of your effort in
writing T-SQL, you will also learn the process and order by which SQL Server evaluates your queries.
Understanding the logical order for operations of SELECT statements is vital to learning how to write
effective queries.

Objectives
After completing this module, you will be able to describe:

 The elements of T-SQL and their role in writing queries.

 The use of sets in SQL Server.

 The use of predicate logic in SQL Server.

 The logical order of operations in SELECT statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-2 Introduction to T-SQL Querying

Lesson 1
Introducing T-SQL

In this lesson, you will learn the role of T-SQL in writing SELECT statements. You will also learn about many
of the T-SQL language elements and which ones are useful for writing queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe Microsoft’s implementation of the standard SQL language.

 Categorize SQL statements into their dialects.

 Identify the elements of T-SQL, including predicates, operators, expressions, and comments.

About T-SQL

T-SQL is Microsoft’s implementation of the
industry standard Structured Query Language. The
language was originally developed to support the
new relational data model at International
Business Machines (IBM) in the early 1970s. Since
then, SQL has become widely adopted in the
industry. SQL became a standard of the American
National Standards Institute (ANSI) and the
International Organization for Standardization
(ISO) in the 1980s.

The ANSI standard has gone through several
revisions, including SQL-89 and SQL-92—the
specifications are either fully or partly supported by T-SQL. SQL Server 2016 also implements features
from later standards, such as ANSI SQL-2008 and ANSI SQL-2011. Microsoft, like many vendors, has also
extended the language to include SQL Server-specific features and functions.

Besides Microsoft’s implementation as T-SQL in SQL Server, Oracle has PL/SQL, IBM has SQL PL, and
Sybase maintains its own T-SQL operation.

An important concept to understand when working with T-SQL is that it is not a procedural language but
a set-based and declarative language. When you write a query to retrieve data from SQL Server, you
describe the data you wish to display; you do not tell SQL Server exactly how to retrieve it. Instead of
supplying a procedural list of steps to take, you provide the attributes of the data you seek.

For example, if you want to retrieve a list of customers who are located in Portland, a procedural
approach might look like this:

Procedural Approach

Loop through each row in the data.
If the city is Portland, return the row; otherwise do nothing.
Move to next row.
End loop.

This procedural code has to contain the logic to retrieve the data—to inspect the data to see if it meets
your needs—and will be doing this for all the data in the table, whether or not it is relevant.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-3

With a declarative language such as T-SQL, you will provide the attributes and values that describe the set
you wish to retrieve. You do not have to specify how to retrieve the data, but you should identify what the
data is.

For example, see the following pseudo-code:

Declarative Language

Return all the customers whose city is Portland

With T-SQL, the SQL Server 2016 Database Engine will determine the optimal path to access the data and
return a matching set. Your role is to learn to write efficient and accurate T-SQL code so you can properly
describe the set you wish to retrieve.

If you have a background in other programming environments, adopting a new mindset may present a
challenge. This course has been designed to help you bridge the gap between procedural and set-based,
declarative T-SQL.

 Note: Sets will be discussed later in this module.

Categories of T-SQL Statements

T-SQL statements can be organized into three
categories:

 Data Manipulation Language (DML) is the
set of T-SQL statements that focuses on
querying and modifying data. This includes
SELECT, the primary focus of this course, and
modification statements such as INSERT,
UPDATE, and DELETE. You will learn about
SELECT statements throughout this course.

 Data Definition Language (DDL) is the set of
T-SQL statements that handles the definition
and life cycle of database objects, such as
tables, views, and procedures. This includes statements such as CREATE, ALTER, and DROP.

 Data Control Language (DCL) is the set of T-SQL statements used to manage security permissions
for users and objects. DCL includes statements such as GRANT, REVOKE, and DENY.

 Note: DCL commands are beyond the scope of this course. For more information about
SQL Server 2016 security, including DCL, see the Microsoft Official Course 20473-2: Administering
a SQL Database Infrastructure.

For additional information on DML, DDL, and DCL commands, see the SQL Server 2016 Technical
Documentation:

Transact-SQL Reference (Database Engine)

http://aka.ms/hjmhuj

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-4 Introduction to T-SQL Querying

T-SQL Language Elements

Like many programming languages, T-SQL
contains elements that you will use in queries. You
will use predicates to filter rows; operators to
perform comparisons; functions and expressions to
manipulate data or retrieve system information;
and comments to document your code. If you
need to go beyond writing SELECT statements to
create stored procedures, triggers, and other
objects, you might use elements such as control-
of-flow statements, variables to temporarily store
values, and batch separators. The next several
topics in this lesson will introduce you to many of
these elements.

 Note: The purpose of this lesson is to introduce common elements of the T-SQL language,
which will be presented here at a high conceptual level. Subsequent modules in this course will
show more detailed explanations.

T-SQL Language Elements: Predicates and Operators

The T-SQL language provides elements for
specifying and evaluating logical expressions. In
SELECT statements, you can use logical expressions
to define filters for WHERE and HAVING clauses.
You will write these expressions using predicates
and operators.

Predicates supported by T-SQL include the
following:

 IN: used to determine whether a value
matches any value in a list or subquery.
For example, WHERE day IN (1,5,6,10).

 BETWEEN: used to specify a range of values.
For example, WHERE rate BETWEEN 3 AND 7.

 LIKE: used to match characters against a pattern.
For example, WHERE surname LIKE ‘%mith%’.

Operators include several common categories:

 Comparison. For equality and inequality tests: =, <, >, >=, <=, !=, !>, !< (Note that !>, !< and != are
not ISO standard—it is best practice to use standard options when they exist.)

 Logical. For testing the validity of a condition: AND, OR, NOT.

 Arithmetic. For performing mathematical operations: +, -, *, /, % (modulo).

 Concatenation. For combining character strings: +.

 Assignment. For setting a value: =.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-5

As with other mathematical environments, operators are subject to rules governing precedence. The
following table describes the order in which T-SQL operators are evaluated:

Order of Evaluation Operator

1 ~ (Bitwise NOT)

2 /, *, % (Division, Multiply, Modulo)

3 +, -, &, ^, | (Positive/Add/Concatenate, Negative/Subtract, Bitwise AND,
Bitwise Exclusive OR, Bitwise OR)

4 =, >, <, <=, <, !=, !, !<, !> (Comparisons)

5 NOT

6 AND

7 ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

8 = (Assignment)

For more information on operator precedence, see the SQL Server 2016 Technical Documentation:

Operator Precedence

http://aka.ms/y6ylxo

T-SQL Language Elements: Functions

SQL Server 2016 provides a wide variety of
functions for your T-SQL queries. They range from
scalar functions, such as SYSDATETIME, which
return a single-valued result, to others that
operate on and return entire sets, such as the
windowing functions you will learn about later in
this course.

As with operators, SQL Server functions can be
organized into categories. Here are some common
categories of scalar (single-value) functions
available to you for writing queries:

 String functions

o SUBSTRING, LEFT, RIGHT, LEN, DATALENGTH

o REPLACE, REPLICATE

o UPPER, LOWER, RTRIM, LTRIM

o STUFF

o SOUNDEX

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-6 Introduction to T-SQL Querying

 Date and time functions

o GETDATE, SYSDATETIME, GETUTCDATE

o DATEADD, DATEDIFF

o YEAR, MONTH, DAY

o DATENAME, DATEPART

o ISDATE

 Aggregate functions

o SUM, MIN, MAX, AVG

o COUNT, COUNT_BIG

o STDEV, STDEVP

o VAR

 Mathematical functions

o RAND, ROUND, POWER, ABS

o CEILING, FLOOR

 Note: The purpose of this lesson is to introduce many elements of the T-SQL language,
which is presented here at a high conceptual level. Subsequent modules in this course will show
more detailed explanations.

For more information, including code samples, see the SQL Server 2016 Technical Documentation:

Built-in Functions

http://aka.ms/jw8w5j

T-SQL Language Elements: Variables

Like many programming languages, T-SQL
provides a means of temporarily storing a value of
a specific data type. However, unlike other
programming environments, all user-created
variables are local to the T-SQL batch that created
them—and are visible only to that batch. There
are no global or public variables available to SQL
Server users.

To create a local variable in T-SQL, you must give
a name, data type, and initial value. The name
must start with a single @ (at) symbol, and the
data type must be system-supplied or user-
defined, and stored in the database your code will run against.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-7

 Note: You may find references in SQL Server literature, websites, and so on, to so-called
“system variables,” named with a double @@, such as @@ERROR. It is more accurate to refer to
these as system functions, because users may not assign a value to them. This course will
differentiate user variables prefixed with a single @ from system functions prefixed with @@.

If your variable is not initialized in the DECLARE statement, it will be created with a value of NULL and you
can subsequently assign a value with the SET statement. SQL Server 2008 introduced the capability to
name and initialize a variable in the same statement.

The following example creates a character variable initialized to the string 'Program%':

Character Variable

DECLARE @search varchar(30) = 'Match%';

The following example creates a date variable and assigns the current date:

Date Variable

DECLARE @CurrentDate date;
SET @CurrentDate = GETDATE();

You will learn more about different data types—including dates—and T-SQL variables later in this course.

If persistent storage or global visibility for a value is needed, consider creating a table in a database for
that purpose. SQL Server provides both temporary and permanent storage in databases.

For more information on different types of tables, see:

Types of Tables in SQL 2016

http://aka.ms/quew7f

T-SQL Language Elements: Expressions

T-SQL provides combinations of identifiers,
symbols, and operators that are evaluated by SQL
Server to return a single result. These
combinations are known as expressions, offering a
useful and powerful tool for your queries. In
SELECT statements, you may use expressions:

 In the SELECT clause to operate on and/or
manipulate columns.

 As CASE expressions to replace values
matching a logical expression with another
value.

 In the WHERE clause to construct predicates for filtering rows.

 As table expressions to create temporary sets used for further processing.

 Note: The purpose of this lesson is to introduce many elements of the T-SQL language,
which will be presented here at a high conceptual level.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-8 Introduction to T-SQL Querying

Expressions may be based on a scalar (single-value) function, on a constant value, or on variables. Multiple
expressions may be joined using operators if they have the same data type, or if the data type can be
converted from a lower precedence to a higher precedence (for example, int to money).

The following example of an expression operates on a column to add an integer to the results of the YEAR
function on a datetime column:

Expression

SELECT YEAR(orderdate) AS currentyear, YEAR(orderdate) + 1 AS nextyear
FROM Sales.Orders;

 Note: The preceding example uses T-SQL techniques, such as column aliases and date
functions, which will be covered later in this course.

T-SQL Language Elements: Control of Flow, Errors, and Transactions

While T-SQL is primarily a data retrieval language
and not a procedural language, it does support a
limited set of statements that provide some
control of flow during execution.

Some of the commonly-used control-of-flow
statements include:

 IF ... ELSE, for providing branching control
based on a logical test.

 WHILE, for repeating a statement or block of
statements while a condition is true.

 BEGIN ... END, for defining the extents of a
block of T-SQL statements.

 TRY ... CATCH, for defining the structure of exception handling (error handling).

 THROW, for raising an exception and transferring execution to a CATCH block.

 BEGIN TRANSACTION, for marking a block of statements as part of an explicit transaction. Ended by
COMMIT TRANSACTION or ROLLBACK TRANSACTION.

 Note: Control-of-flow operators are not used in stand-alone queries. For example, if your
primary role is as a report writer, it is unlikely that you will need to use them. However, if your
responsibilities include creating objects such as stored procedures and triggers, you will use these
elements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-9

T-SQL Language Elements: Comments

T-SQL has two methods for documenting code or
instructing the database engine to ignore certain
statements. Which method you use will typically
depend on the number of lines of code you want
ignored:

 For single lines, or very few lines of code, use
the -- (double dash) to precede the text to be
marked as a comment. Any text following the
dashes will be ignored by SQL Server.

 For longer blocks of code, enclose the text
between /* and */ characters. Any code
between the characters will be ignored by SQL
Server.

The following example uses the -- (double dash) method to mark comments:

Example of a single line comment:

Single Line Comments

-- This whole line is a comment
DECLARE @search varchar(30) = 'Match%'; -- end of a line

The following example uses the /* comment block */ method to mark comments:

Example of a block comment:

Block Comment

/*
 All the text in this paragraph will be treated as comments
 by SQL Server.
*/

Many query editing tools, such as SQL Server Management Studio (SSMS), Visual Studio®, or SQLCMD,
will color-code commented text in a different color from the surrounding T-SQL code. In SSMS, use the
Tools, Options dialog box to customize the colors and fonts in the T-SQL script editor.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-10 Introduction to T-SQL Querying

T-SQL Language Elements: Batch Separators

SQL Server client tools, such as SSMS, send
commands to the database engine in sets called
batches. If you are manually executing code, such
as in a query editor, you can choose whether to
send all the text in a script as one batch. You may
also choose to insert separators between certain
sections of code.

The specification of a batch separator is handled
by your client tool. For example, the keyword GO
is the default batch separator in SSMS. You can
change this for the current query in Query | Query
Options or globally in Tools | Options | Query
Execution.

For most simple query purposes, batch separators are not used, because you will be submitting a single
query at a time. However, when you need to create and manipulate objects, you might need to separate
statements into distinct batches. For example, a CREATE VIEW statement might not be included in the
same batch as other statements.

The following is an example of a CREATE TABLE and CREATE VIEW statement in the same batch:

Code That Requires Multiple Batches

CREATE TABLE table1 (col1 int);
CREATE VIEW view1 as SELECT * FROM table1;

The previous example returns the following error:

Msg 111, Level 15, State 1, Line 2
'CREATE VIEW' must be the first statement in a query batch.

Note that user-declared variables are considered local to the batch in which they are declared. If a
variable is declared in one batch and referenced in another, the second batch would fail. Insert a GO
batch separator between the two CREATE statements to resolve the previous error.

For example, the following statements work properly when sent together as one batch:

Local Variable

DECLARE @cust int = 5;

SELECT custid, companyname, contactname
FROM Sales.Customers
WHERE custid = @custid;

However, if a batch separator was inserted between the variable declaration and the query in which the
variable is used, an error would occur.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-11

The following example separates the variable declaration from its use in a query:

Variable Separated by Batch

DECLARE @cust int = 5;
GO
SELECT custid, companyname, contactname
FROM Sales.Customers
WHERE custid = @custid;

The previous example returns the following error:

Msg 137, Level 15, State 2, Line 5
Must declare the scalar variable "@custid".

Demonstration: T-SQL Language Elements

In this demonstration, you will see how to:

 Use T-SQL language elements.

Note that some elements will be covered in more depth in later modules.

Demonstration Steps
Use T-SQL Language Elements

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In File Explorer, browse to D:\Demofiles\Mod02, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. When the script has finished, press any key.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows® Authentication.

6. On the File menu, point to Open, and then click Project/Solution.

7. In the Open Project dialog box, browse to the D:\Demofiles\Mod02\Demo folder, and then
double-click Demo.ssmssln.

8. In Solution Explorer, expand Queries, and then double-click the 11 - Demonstration A.sql script file.

9. Select the code under Step 1, and then click Execute.

10. Select the code under Step 2, and then click Execute.

11. Select the code under Step 3, and then click Execute.

12. Select the code under Step 4, and then click Execute.

13. Select the code under Step 5, and then click Execute.

14. Select the code under Step 6, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-12 Introduction to T-SQL Querying

15. Select the code under Step 7, and then click Execute.

16. Select the code under Step 8, and then click Execute.

17. Select the code under the comment Cleanup task if needed, and then click Execute.

18. Close SQL Server Management Studio.

Check Your Knowledge

Question

From the following T-SQL elements, select the one that does not contain an expression:

Select the correct answer.

 SELECT FirstName, LastName, SkillName AS Skill, GetDate() - DOB AS Age

 WHERE HumanResources.Department.ModifiedDate > (SYSDATETIME() - 31)

 JOIN HumanResources.Skills ON Employees.ID = Skills.EmployeeID

 WHERE Skill.Level + Skill.Confidence > 10

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-13

Lesson 2
Understanding Sets

This lesson introduces the concepts of the set theory, one of the mathematical underpinnings of relational
databases, and helps you apply it to how you think about querying SQL Server.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the role of sets in a relational database.

 Understand the impact of sets on your T-SQL queries.

 Describe attributes of sets that may require special treatment in your queries.

The Set Theory and SQL Server

The set theory is one of the mathematical
foundations of the relational model and so is
fundamental to working with SQL Server 2016.
While you might be able to make progress writing
queries in T-SQL without an appreciation of sets,
you may eventually have difficulty expressing
some of them in a single, well-performing
statement.

This lesson will set the stage for you to begin
"thinking in sets" and understanding their nature.
In turn, this will make it easier for you to:

 Take advantage of set-based statements in T-
SQL.

 Understand why you still need to sort your query output.

 Understand why a set-based, declarative approach, rather than a procedural one, works best with SQL
Server.

For our purposes, without delving into the mathematics supporting set theory, a set is defined as "a
collection of definite, distinct objects considered as a whole." In terms applied to SQL Server databases,
you can think of a set as a single unit (such as a table) containing zero or more members of the same
type. For example, a Customer table represents a set—specifically, the set of all customers. You will see
that the results of a SELECT statement also form a set, which will have important ramifications when
learning about subqueries and table expressions.

As you learn more about certain T-SQL query statements, it is important to think of the entire set, instead
of individual members, at all times. This will better equip you to write set-based code, instead of thinking
one row at a time. Working with sets requires thinking in terms of operations that occur "all at once"
instead of one at a time. Depending on your background, this may require an adjustment.

After "collection," the next critical term in our definition is "distinct," or unique. All members of a set must
be unique. In SQL Server, uniqueness is typically implemented using keys, such as a primary key column.

However, when you start working with subsets of data, it’s important to know how you can uniquely
address each member of a set.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-14 Introduction to T-SQL Querying

This brings us back to the consideration of the set as a "whole." Noted SQL language author Joe Celko
suggests mentally adding the phrase "Set of all…" in front of the names of SQL objects that represent sets
("set of all customers," for example). This will help you remember that, when you write T-SQL code, you
are addressing a collection of elements, not just one element at a time.

One important consideration is what is omitted from the set theory—any requirement regarding the
order of elements in a set. In short, there is no predefined order in a set. Elements may be addressed (and
retrieved) in any order. Applied to your queries this means that, if you need to return results in a certain
order, you must use the ORDER BY clause in your SELECT statements. You will learn more about ORDER
BY later in this course.

Set Theory Applied to SQL Server Queries

Given the set-based foundation of databases,
there are a few considerations and
recommendations to be aware of when writing
efficient T-SQL queries:

 Act on the whole set at once. This translates to
querying the whole table at once, instead of
cursor-based or iterative processing.

 Use declarative, set-based processing. Tell SQL
Server what you want to retrieve by
describing its attributes, not by navigating to
its position.

 When possible, ensure that you are addressing elements via their unique identifiers, such as keys. For
example, write JOIN clauses referencing unique keys on one side of the relationship.

 Provide your own sorting instructions, because result sets are not guaranteed to be returned in any
order.

 Additional Reading: For more information on set theory and logical query processing, and
its application to SQL queries, see Chapter 1 of Itzik Ben-Gan’s T-SQL Querying (Microsoft Press,
2015).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-15

Categorize Activity
Place each employee into the appropriate set. Indicate your answer by writing the set number to the right
of each item.

Items

1 Carolos Lamy
Works in: London
Skills:
JavaScript
XML

2 Naiyana Kunakorn
Works in: Washington DC
Skills:
JavaScript
SQL Server Administration
T-SQL
XML

3 Zachary Parsons
Works in: Seattle
Skills:
Active Directory Administration SharePoint Administration
SQL Server Administration

4 Patrick Lorenzen
Works in: London
Skills:
SharePoint Administration
SQL Server Administration

5 Frederic Towle
Works in: Tokyo
Skills:
Active Directory Administration
T-SQL

6 Nickolas McLaughlin
Works in: Seattle
Skills:
C#
JavaScript
SQL Server Administration

7 Jeanie Sheppard
Works in: Buenos Aires
Skills:
C#
JavaScript
T-SQL

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-16 Introduction to T-SQL Querying

Category 1 Category 2 Category 3

Employees in London Employees who know T-SQL Employees in Seattle who
know SQL Server
Administration

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-17

Lesson 3
Understanding Predicate Logic

Along with set theory, predicate logic is a mathematical foundation for the relational database model, and
with it, SQL Server 2016. You probably have a fair amount of experience with predicate logic—rather than
the set theory—even if you have never used the term to describe it. This lesson will introduce predicate
logic and examine its application to querying SQL Server.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the role of predicate logic in a relational database.

 Understand the use of predicate logic on your T-SQL queries.

Predicate Logic and SQL Server

In theory, predicate logic is a framework for
expressing logical tests that return true or false. A
predicate is a property or expression that is true or
false. You may have heard this referred to as a
Boolean expression.

Taken by themselves, predicates make
comparisons and express the results as true or
false. However, in T-SQL, predicates don't stand
alone. They are usually embedded in a statement
that does something with the true or false result,
such as a WHERE clause to filter rows; a CASE
expression to match a value; or even a column
constraint governing the range of acceptable values for that column in a table's definition.

There’s one important omission in the formal definition of a predicate—how to handle unknown, or
missing, values. If a database is set up so that missing values are not permitted (through constraints, or
default value assignments), then perhaps this is not an important omission. In most real-world
environments, however, you need to account for missing or unknown values, and extend your
understanding of predicates from two possible outcomes (true or false) to three—true, false, or unknown.

The use of NULLs as a mark for missing data will be discussed further in the next topic, and later in this
course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-18 Introduction to T-SQL Querying

Predicate Logic Applied to SQL Server Queries

As you have been learning, the ability to use
predicates to express comparisons in terms of true,
false, or unknown, is vital to writing effective
queries in SQL Server. Although they have been
discussing them separately, predicates do not
stand alone, syntactically speaking. Typically, you
will use predicates in any of the following roles
within your queries:

 Filtering data (in WHERE and HAVING
clauses).

 Providing conditional logic to CASE
expressions.

 Joining tables (in the ON filter).

 Defining subqueries (in EXISTS tests, for example).

Additionally, predicates have uses outside SELECT statements, such as in CHECK constraints to limit values
permitted in a column, and in control-of-flow elements, such as an IF statement.

In mathematics, you only need to consider values that are present, so predicates can result only in true or
false values (known in predicate logic as “the law of the excluded middle”). In databases, however, you will
likely have to account for missing values; the interaction of T-SQL predicates with missing values results in
an unknown. When you are designing query logic, ensure that you have accounted for all three possible
outcomes—true, false, or unknown. You will learn how to use three-valued logic in WHERE clauses later in
this course.

Check Your Knowledge

Question

From the following T-SQL elements, select the one that can include a predicate:

Select the correct answer.

 WHERE clauses

 JOIN conditions

 HAVING clauses

 WHILE statements

 All of the above

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-19

Lesson 4
Understanding the Logical Order of Operations in SELECT
Statements

T-SQL is unusual as a programming language in one key aspect. The order in which you write a statement
is not necessarily that in which the database engine will evaluate and process it. Database engines may
optimize their execution of a query, providing the accuracy of the result (as determined by the logical
order) is retained. As a result, unless you learn the logical order of operations, you may find both
conceptual and practical obstacles to writing your queries. This lesson will introduce the elements of a
SELECT statement; delineate the order in which the elements are evaluated; and then apply this
understanding for a practical approach to writing queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the elements of a SELECT statement.

 Understand the order in which clauses in a SELECT statement are evaluated.

 Apply your understanding of the logical order of operations to writing SELECT statements.

Elements of a SELECT Statement

To understand the logical order of operations, you
need to look at a SELECT statement as a whole,
including a number of optional elements.
However, this lesson is not designed to provide
detailed information about these elements—each
part of a SELECT statement will be discussed in
subsequent modules. Understanding the details of
a WHERE clause, for example, is not required to
recognize its place in the sequence of events.

A SELECT statement is made up of mandatory and
optional elements. Strictly speaking, SQL Server
only requires a SELECT clause to execute without
error. A SELECT clause without a FROM clause operates as if selecting from an imaginary table containing
one row. You will see this behavior when you test variables later in this course. However, as a SELECT
clause without a FROM clause cannot retrieve data from a table, you will treat stand-alone SELECT clauses
as a special case not directly relevant to this lesson. Let's examine the elements, their high level role in a
SELECT statement, and the order in which they are evaluated by SQL Server.

Not all elements will be present in every SELECT query. However, when an element is present, it will
always be evaluated in the same order, with respect to the others present. For example, a WHERE clause
will always be evaluated after the FROM clause and before a GROUP BY clause, if one exists.

You will discuss the order of these operations in the next topic.

 Note: For the purposes of this lesson, additional optional elements, such as DISTINCT,
OVER, and TOP, are omitted. They will be introduced, and their order discussed, in later modules.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-20 Introduction to T-SQL Querying

Logical Query Processing

The order in which a SELECT statement is written is
not that in which it is evaluated and processed by
the SQL Server Database Engine.

Consider the following query:

Logical Query Processing

USE TSQL;
SELECT EmployeeId, YEAR(OrderDate) AS
OrderYear
FROM Sales.Orders
WHERE CustomerId = 71
GROUP BY EmployeeId, YEAR(OrderDate)
HAVING COUNT(*) > 1
ORDER BY EmployeeId, OrderYear;

Before you examine the run-time order of operations, let's briefly examine what the query does, although
details on many clauses will need to wait until the appropriate module. The first line ensures you're
connected to the correct database for the query. This line is not being examined for its run-time order.

If necessary, you need this to complete before the main SELECT query executes:

Change the Database Connection

USE TSQL; -- change connection context to a database named TSQL.

The next line is the start of the SELECT statement as you wrote it, but as you'll see, it will not be the first
line evaluated.

The SELECT clause returns the EmployeeId column and extracts just the year from the OrderDate column:

Start of SELECT

SELECT EmployeeId, YEAR(OrderDate) AS OrderYear

The FROM clause identifies which table is the source of the rows for the query—in this case Sales.Orders:

FROM Clause

FROM Sales.Orders

The WHERE clause filters the rows out of the Sales.Orders table, keeping only those that satisfy the
predicate—in this case, a customer with an ID of 71:

WHERE Clause

WHERE CustomerId = 71

The GROUP BY clause groups together the remaining rows by EmployeeId, and then by the year of the
order:

GROUP BY Clause

GROUP BY EmployeeId, YEAR(OrderDate)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-21

After the groups are established, the HAVING clause filters them based on its predicate. Only employees
with more than one sale per customer in a given year will pass this filter:

HAVING Clause

HAVING COUNT(*) > 1

For the purposes of previewing this query, the final clause is the ORDER BY, which sorts the output by
EmployeeId, and then by year:

ORDER BY Clause

ORDER BY EmployeeId, OrderYear;

Now that you've established what each clause does, let's look at the order in which SQL Server must
evaluate them:

1. The FROM clause is evaluated first, to provide the source rows for the rest of the statement. Later in
the course, you'll see how to join multiple tables together in a FROM clause. A virtual table is created
and passed to the next step.

2. The WHERE clause is next to be evaluated, filtering those rows from the source table that match a
predicate. The filtered virtual table is passed to the next step.

3. GROUP BY is next, organizing the rows in the virtual table according to unique values found in the
GROUP BY list. A new virtual table is created, containing the list of groups, and is passed to the next
step.

 Note: From this point in the flow of operations, only columns in the GROUP BY list or
aggregate functions may be referenced by other elements. This will have a significant impact on
the SELECT list.

4. The HAVING clause is evaluated next, filtering out entire groups based on its predicate. The virtual
table created in step 3 is filtered and passed to the next step.

5. The SELECT clause finally executes, determining which columns will appear in the query results.

 Note: Because the SELECT clause is evaluated after the other steps, any column aliases (in
our example, OrderYear) created there cannot be used in the GROUP BY or HAVING clause.

6. In our example, the ORDER BY clause is the last to execute, sorting the rows as determined in its
column list.

To apply this to our example query, here is the logical order at run time, with the USE statement omitted
for clarity:

Logical Order

FROM Sales.Orders
WHERE CustomerId = 71
GROUP BY EmployeeId, YEAR(OrderDate)
HAVING COUNT(*) > 1
SELECT EmployeeId, YEAR(OrderDate) AS OrderYear
ORDER BY EmployeeId, OrderYear;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-22 Introduction to T-SQL Querying

As you have seen, you do not write T-SQL queries in the same order in which they are logically evaluated.
Because the run-time order of evaluation determines what data is available to clauses downstream from
one another, it's important to understand the true logical order when writing queries.

Applying the Logical Order of Operations to Writing SELECT Statements

Now that you have learned the logical order of
operations when a SELECT query is evaluated and
processed, remember the following considerations
when writing a query. Note that some of these
may refer to details you will learn in subsequent
modules:

 Decide which tables to query first, in addition
to any table aliases you will apply. This will
determine the FROM clause.

 Decide which set or subset of rows will be
retrieved from the table(s) in the FROM
clause, and how you will express your
predicate. This will determine your WHERE clause.

 If you intend to group rows, decide which columns will be grouped. Remember that only columns in
the GROUP BY clause, in addition to aggregate functions such as COUNT, may ultimately be included
in the SELECT clause.

 If you need to filter out groups, decide on your predicate and build a HAVING clause. The results of
this phase become the input to the SELECT clause.

 If you are not using GROUP BY, determine which columns from the source table(s) you wish to
display, and use any table aliases you created to refer to them. This will become the core of your
SELECT clause. If you have used a GROUP BY clause, select from the columns in the GROUP BY clause,
and add any additional aggregates to the SELECT list.

 Finally, remember that sets do not include any ordering—you will need to add an ORDER BY clause to
guarantee a sort order if required.

Demonstration: Logical Query Processing

In this demonstration, you will see how to:

 View query output that illustrates logical processing order

Demonstration Steps
View Query Output That Illustrates Logical Processing Order

1. Start the 20761B-MIA-DC, 20761B-MIA-SQL, MSL-TMG1 virtual machines, and then log on to
20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Open SQL Server Management Studio.

3. In the Connect to Server dialog box, in the Server name box, enter the server you created during
preparation. For example, 20761Ba-azure.database.windows.net.

4. In the Authentication list, click SQL Server Authentication.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-23

5. In the Login box, type Student.

6. In the Password box, type Pa$$w0rd, and then click Connect.

7. On the File menu, point to Open, and then click Project/Solution.

8. In the Open Project dialog box, browse to the D:\Demofiles\Mod02\Demo folder, and then
double-click Demo.ssmssln.

9. In Solution Explorer, double-click the 21 - Demonstration B.sql script file.

10. On the Query menu, point to Connection, and then click Change Connection.

11. In the Connect to Database Engine dialog box, in the Server name box, enter the server you
created during preparation. For example, 20761Ba-azure.database.windows.net.

12. In the Authentication list, click SQL Server Authentication.

13. In the Login box, type Student.

14. In the Password box, type Pa$$w0rd, and then click Connect.

15. In the Available Databases list, click AdventureWorksLT.

16. Select the code under the comment Step 1, and then click Execute.

17. Select the code under Step 2, and then click Execute.

18. Select the code under Step 3, and then click Execute.

19. Select the code under Step 4, and then click Execute.

20. Select the code under Step 5, and then click Execute. Note the error message.

21. Select the code under Step 6, and then click Execute.

22. Select the code under Step 7, and then click Execute.

23. Select the code under Step 8, and then click Execute.

24. Close SQL Server Management Studio, without saving any changes.

Sequencing Activity
Put the following T-SQL elements in order by numbering each to indicate the order that SQL Server will
process them in when they appear in a single SELECT statement.

 Steps

 FROM

 WHERE

 GROUP BY

 HAVING

 SELECT

 ORDER BY

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-24 Introduction to T-SQL Querying

Lab: Introduction to T-SQL Querying
Scenario
You are an Adventure Works business analyst, who will be writing reports against corporate databases
stored in SQL Server 2016. To help you become more comfortable with SQL Server querying, the
Adventure Works IT department has provided some common queries to run against their databases. You
will review and execute these queries.

Objectives
After completing this lab, you will be able to:

 Execute basic SELECT statements.

 Execute queries that filter data.

 Execute queries that sort data.

Estimated Time: 30 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Executing Basic SELECT Statements

Scenario
The T-SQL script provided by the IT department includes a SELECT statement that retrieves all rows from
the HR.Employees table—this includes the firstname, lastname, city, and country columns. You will
execute the T-SQL script against the TSQL database.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Execute the T-SQL Script

3. Execute a Part of the T-SQL Script

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab02\Starter folder as Administrator.

 Task 2: Execute the T-SQL Script
1. Open the project file D:\Labfiles\Lab02\Starter\Project\Project.ssmssln.

2. Connect to the MIA-SQL database using Windows authentication.

3. Open the T-SQL script 51 - Lab Exercise 1.sql.

4. Execute the whole script.

5. Observe the result and the database context.

6. Which database is selected in the Available Databases box?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-25

 Task 3: Execute a Part of the T-SQL Script
1. Highlight the SELECT statement in the T-SQL script under the Task 2 description and click Execute.

2. Observe the result. You should get the same result as in Task 2.

 Note: One way to highlight a portion of code is to hold down the Alt key while drawing a
rectangle around it with your mouse. The code inside the drawn rectangle will be selected. Try it.

3. Close all open windows.

Results: After this exercise, you should know how to open the T-SQL script and execute the whole script
or just a specific statement inside it.

Exercise 2: Executing Queries That Filter Data Using Predicates

Scenario
The next T-SQL script is very similar to the first one. The SELECT statement retrieves the same columns
from the HR.Employees table, but uses a predicate in the WHERE clause to retrieve only rows with the
value “USA” in the country column.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Script

2. Change the Database Context with the GUI

3. Change the Database Context with T-SQL

 Task 1: Execute the T-SQL Script
1. Open the project file D:\Labfiles\Lab02\Starter\Project\Project.ssmssln and the T-SQL script 61 -

Lab Exercise 2.sql. Execute the whole script.

2. There is an error. What is the error message? Why do you think this happened?

 Task 2: Change the Database Context with the GUI
1. Apply the needed changes to the script so that it will run without an error. (Hint: you do not need to

change any T-SQL information to fix the error.) Test the changes by executing the whole script.

2. Observe the result. Notice that the result has fewer rows than the result in exercise 1, task 2.

 Task 3: Change the Database Context with T-SQL
1. Comments in T-SQL scripts can be written inside the line by specifying --. The text after the two

hyphens will be ignored by SQL Server. You can also specify a comment as a block starting with /*
and ending with */. The text in between is treated as a block comment and is ignored by SQL Server.

2. Uncomment the following statements:

USE TSQL;
GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-26 Introduction to T-SQL Querying

3. Save and close the T-SQL script. Re-open the T-SQL script 61 - Lab Exercise 2.sql. Execute the whole
script.

4. Why did the script execute with no errors?

5. Observe the result and notice the database context in the Available Databases box.

 Note: SSMS supplies keyboard shortcuts and two buttons so you can quickly comment and
uncomment code. The keyboard shortcuts are CTRL+K then CTRL+C to comment, and CTRL+K
then CTRL+U to uncomment. Or you can use these buttons on the toolbar.

Results: After this exercise, you should have a basic understanding of database context and how to
change it.

Exercise 3: Executing Queries That Sort Data Using ORDER BY

Scenario
The last T-SQL script provided by the IT department has a comment: “This SELECT statement returns first
name, last name, city, and country/region information for all employees from the USA, ordered by last
name.”

The main tasks for this exercise are as follows:

1. Execute the Initial T-SQL Script

2. Uncomment the Needed T-SQL Statements and Execute Them

 Task 1: Execute the Initial T-SQL Script
1. Open the T-SQL script 71 - Lab Exercise 3.sql, and execute the whole script.

2. Observe the results. Why is the result window empty?

 Task 2: Uncomment the Needed T-SQL Statements and Execute Them
1. Observe that, before the USE statement, there are the characters -- which means that the USE

statement is treated as a comment. There is also a block comment around the whole T-SQL SELECT
statement. Uncomment both statements.

2. First, execute the USE statement, and then execute the SELECT clause.

3. Observe the results. Notice that the results have the same rows as in exercise 1, task 2, but they are
sorted by the lastname column.

 Note: What changes would you make to change the sort order to descending?

Results: After this exercise, you should have an understanding of how comments can be specified inside
T-SQL scripts. You will also have an appreciation of how to order the results of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-27

Module Review and Takeaways
In this module, you have learned how to describe:

 The elements of T-SQL and their role in writing queries.

 The use of sets in SQL Server.

 The use of predicate logic in SQL Server.

 The logical order of operations in SELECT statements.

Review Question(s)

Question: Which category of T-SQL statements concerns querying and modifying data?

Question: What are some examples of aggregate functions supported by T-SQL?

Question: Which SELECT statement element will be processed before a WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-1

Module 3
Writing SELECT Queries

Contents:
Module Overview 3-1

Lesson 1: Writing Simple SELECT Statements 3-2

Lesson 2: Eliminating Duplicates with DISTINCT 3-6

Lesson 3: Using Column and Table Aliases 3-11

Lesson 4: Writing Simple CASE Expressions 3-16

Lab: Writing Basic SELECT Statements 3-19

Module Review and Takeaways 3-24

Module Overview
You can use the SELECT statement to query tables and views. It is likely that you will use the SELECT
statement more than any other single statement in T-SQL. You can manipulate the data with SELECT to
customize how SQL Server returns the results. This module introduces you to the fundamentals of the
SELECT statement, focusing on queries against a single table.

Objectives
After completing this module, you will be able to:

 Write simple SELECT statements.

 Eliminate duplicates using the DISTINCT clause.

 Use table and column aliases.

 Write simple CASE expressions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-2 Writing SELECT Queries

Lesson 1
Writing Simple SELECT Statements

In this lesson, you will learn the structure and format of the SELECT statement, in addition to
enhancements that will add functionality and readability to your queries.

Lesson Objectives
At the end of this lesson, you will be able to:

 Understand the elements of the SELECT statement.

 Write simple SELECT queries against a single table.

 Eliminate duplicate rows using the DISTINCT clause.

 Add calculated columns to a SELECT statement.

Elements of the SELECT Statement

The SELECT and FROM clauses are the primary
focus of this module. You will learn about the
other clauses in later modules of this course. You
have already learned the order of operations in
logical query processing; this will help you to
understand how to form your SELECT statements
correctly.

Remember that the FROM, WHERE, GROUP BY
and HAVING clauses are evaluated by the query
engine before the contents of the SELECT clause.
Therefore, elements you write in the SELECT
clause, particularly calculated columns and aliases,
will not be visible to the other clauses.

For more information on the SELECT elements, see:

SELECT (Transact-SQL)

http://aka.ms/vvwmme

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-3

Retrieving Columns from a Table or View

The SELECT clause specifies the columns from the
source table(s) or view(s) that you want to return
as the result set of the query. In addition to
columns from the source table, you can add others
in the form of calculated expressions.

The FROM clause specifies the name of the table
or view that is the source of the columns in the
SELECT clause. To avoid errors in table or view
name resolution, it is best to include the schema
and object name, in the format
SCHEMA.OBJECT—for example Sales.Customer.

If the table or view name contains irregular
characters, such as spaces or other special characters, you need to delimit, or enclose, the name. T-SQL
supports the use of the ANSI standard double quotes “Sales Order Details”, and the SQL Server specific
square brackets [Sales Order Details].

End all statements with a semicolon (;) character. In SQL Server 2016, semicolons are an optional
terminator for most statements. However, future versions will require its use. For current usages when a
semicolon is required, such as some common table expressions (CTEs) and some Service Broker
statements, the error messages returned for a missing semicolon are often cryptic. Therefore, you should
adopt the practice of terminating all statements with a semicolon.

Displaying Columns

To display columns in a query, you need to create
a comma-delimited column list. The order of the
columns in your list will determine their display in
the output, regardless of the order in which you
have defined them in the source table. This gives
your queries the ability to absorb changes that
others may make to the structure of the table,
such as adding or reordering the columns.

T-SQL supports the use of the asterisk, or “star”
character (*) to substitute for an explicit column
list. This will retrieve all columns from the source
table. While the asterisk is suitable for a quick test,
avoid using it in production work, as changes made to the table will cause the query to retrieve all current
columns in the table’s current defined order. This could cause bugs or other failures in reports or
applications expecting a known number of columns returned in a defined order. Furthermore, returning
data that is not needed can slow down your queries and cause performance issues if the source table
contains a large number of rows.

By using an explicit column list in your SELECT clause, you will always achieve the desired results,
providing the columns exist in the table. If a column is dropped, you will receive an error that will help
identify the problem and fix your query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-4 Writing SELECT Queries

Using Calculations in the SELECT Clause

In addition to retrieving columns stored in the
source table, a SELECT statement can perform
calculations and manipulations. Calculations and
manipulations can change the source column
data, and use built-in T-SQL functions, which you
will learn about later in this course.

As the results will appear in a new column,
repeated once per row of the result set, calculated
expressions in a SELECT clause must be scalar—
they must return only a single value.

Calculated expressions can operate on other
columns in the same row, on built-in functions, or
a combination of the two:

Calculated Expression

SELECT unitprice, qty, (unitprice * qty)
FROM Sales.OrderDetails;

The results appear as follows:

unitprice qty
----------- ---------- -----------------------
14.00 12 168.00
9.80 10 98.00
34.80 5 174.00
18.60 9 167.40

Note that the new calculated column does not have a name returned with the results. To provide a name,
you use a column alias, which you will learn about later in this module.

To use a built-in T-SQL function on a column in the SELECT list, pass the name of the column to the
function as an input:

Create a Calculated Column

SELECT empid, lastname, hiredate, YEAR(hiredate)
FROM HR.Employees;

The results:

empid lastname hiredate
---------- ------------ -------------------------- ---------
1 Davis 2002-05-01 00:00:00.000 2002
2 Funk 2002-08-14 00:00:00.000 2002
3 Lew 2002-04-01 00:00:00.000 2002

You will learn more about date and other functions later in this course. The use of YEAR in this example is
provided only to illustrate calculated columns.

 Note: Not all calculations will be recalculated for each row. SQL Server may calculate a
function’s result just once at the time of query execution, and reuse the value for each row. This
will be discussed later in the course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-5

Demonstration: Writing Simple SELECT Statements

In this demonstration, you will see how to:

 Use simple SELECT queries.

Demonstration Steps
Use Simple SELECT Queries

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod03\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and press Enter. When the script has completed, press any key.

5. Start SQL Server Management Studio and connect to the Azure SQL database engine instance using
SQL Server authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod03\Demo folder.

7. In Solution Explorer, expand Queries, and open the Demonstration A.sql script file. You may need
to enter your password to connect to the Azure SQL database engine.

8. In the Available Databases list, click AdventureWorksLT.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Select the code under the comment Step 6, and then click Execute.

14. Select the code under the comment Step 7, and then click Execute.

15. On the File menu, click Close.

16. Keep SQL Server Management Studio open for the next demonstration.

Question: You have a table named Sales with the following columns: Country,
NumberOfReps, TotalSales.

You want to find out the average amount of sales a sales representative makes in each
country. What SELECT query could you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-6 Writing SELECT Queries

Lesson 2
Eliminating Duplicates with DISTINCT

T-SQL queries may display duplicate rows, even if the source table has a key column enforcing
uniqueness. Typically, this is the case when you retrieve only a few of the columns in a table. In this lesson,
you will learn how to eliminate duplicates using the DISTINCT clause.

Lesson Objectives
In this lesson, you will learn how to:

 Understand how T-SQL query results are not true sets and may include duplicates.

 Understand how DISTINCT may be used to remove duplicate rows from the SELECT results.

 Write SELECT DISTINCT clauses.

SQL Sets and Duplicate Rows

While the theory of relational databases calls for
unique rows in a table, in practice, T-SQL query
results are not true sets. The rows retrieved by a
query are not guaranteed to be unique, even
when they come from a source table that uses a
primary key to differentiate each row. The rows
are not guaranteed to be returned in any
particular order. You will learn how to address this
with ORDER BY later in this course.

Add to this the fact that the default behavior of a
SELECT statement is to include the keyword ALL,
and you can begin to see why duplicate values
might be returned by a query—especially when you include only some of the columns in a table (and
omit the unique columns).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-7

For example, consider a query that returns country names from the Sales.Customers table:

SELECT Query

SELECT country
FROM Sales.Customers;

A partial result shows many duplicate country names, which at best is too long to easily interpret. At
worst, it gives a wrong answer to the question: “How many countries are represented among our
customers?”

country

Germany
Mexico
Mexico
UK
Sweden
Germany
Germany
France
UK
Austria
Brazil
Spain
France
Sweden
…
Germany
France
Finland
Poland
 (91 rows(s) affected)

The reason for this output is that, by default, a SELECT clause contains a hidden default ALL statement:

All Statement

SELECT ALL country
FROM Sales.Customers;

Without further instruction, the query will return one result for each row in the Sales.Customers table;
however, as only the country column is specified, you will see just this column for all 91 rows.

Understanding DISTINCT

Replacing the default SELECT ALL clause with
SELECT DISTINCT will filter out duplicates in the
result set. SELECT DISTINCT specifies that the
result set must contain only unique rows.
However, it is important to understand that the
DISTINCT option operates only on the set of
columns returned by the SELECT clause. It does
not take into account any other unique columns in
the source table. DISTINCT also operates on all the
columns in the SELECT list, not just the first one.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-8 Writing SELECT Queries

The logical order of operations also ensures that the DISTINCT operator will remove rows that may have
already been processed by WHERE, HAVING, and GROUP BY clauses.

Continuing the previous example of countries from the Sales.Customers table, you can replace the silent
ALL default with DISTINCT, to eliminate the duplicate values:

DISTINCT Statement

SELECT DISTINCT country
FROM Sales.Customers;

This will return the desired results. Note that, while the results appear to be sorted, this is not guaranteed
by SQL Server. The result set now contains only one instance of each unique output row:

country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK
USA
Venezuela
 (21 row(s) affected)

 Note: You will learn additional methods for filtering out duplicate values later in this
course. After you have learned them, you could consider the relative performance costs of
filtering with SELECT DISTINCT, compared to those other methods.

SELECT DISTINCT Syntax

Remember that DISTINCT looks at rows in the
output set, created by the SELECT clause.
Therefore, only unique column values will be
returned by a SELECT DISTINCT clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-9

For example, if you query a table with the following data in it, you might observe that there are only four
unique first names and four unique last names:

SELECT Statement

SELECT firstname, lastname
FROM Sales.Customers;

The results:

firstname lastname
------------ -----------------
Sara Davis
Don Funk
Sara Lew
Don Davis
Judy Lew
Judy Funk
Yael Peled

However, a SELECT DISTINCT query against both columns will retrieve all unique combinations of the two
columns which, in this case, is the same seven employees.

For a list of unique first names only, execute a SELECT DISTINCT only against the firstname column:

DISTINCT Syntax

SELECT DISTINCT firstname
FROM Sales.Customers;

The results:

firstname

Don
Judy
Sara
Yael
 (4 row(s) affected)

A challenge in designing such queries is that, while you may need to retrieve a distinct list of values from
one column, you might want to see additional attributes (columns) from others. Later in this course, you
will see how to combine DISTINCT with the GROUP BY clause as a way of further processing and
displaying information about distinct lists of values.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-10 Writing SELECT Queries

Demonstration: Eliminating Duplicates with DISTINCT

In this demonstration, you will see how to:

 Eliminate duplicate rows.

Demonstration Steps
Eliminate Duplicate Rows

1. In Solution Explorer, open the Demonstration B.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

2. In the Available Databases list, click AdventureWorksLT.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. On the File menu, click Close.

7. Keep SQL Server Management Studio open for the next demonstration.

Question: You have company departments in five countries. You have the following query
for the Human Resources database:

SELECT DeptName, Country

FROM HumanResources.Departments

This returns:

DeptName Country

--------- --------

Sales UK

Sales USA

Sales France

Sales Japan

Marketing USA

Marketing Japan

Research USA

You add a DISTINCT keyword to the SELECT query. How many rows are returned?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-11

Lesson 3
Using Column and Table Aliases

When retrieving data from a table or view, a T-SQL query will name each column after its source. You can
relabel columns by using aliases in the SELECT clause. However, columns created with expressions will not
be named automatically. Column aliases can be used to provide custom column headers. At the table
level, you can use aliases in the FROM clause to provide a convenient way of referring to a table elsewhere
in the query, enhancing readability.

Lesson Objectives
In this lesson, you will learn how to:

 Use aliases to refer to columns in a SELECT list.

 Use aliases to refer to columns in a FROM clause.

 Understand the impact of the logical order of query processing on aliases.

Use Aliases to Refer to Columns

Column aliases can be used to relabel columns
when returning the results of a query. For
example, cryptic names of columns in a table such
as "qty" can be replaced with "quantity".

Expressions that are not based on a source column
in the table will not have a name provided in the
result set. This includes calculated expressions and
function calls. While T-SQL doesn’t require that a
column in a result set have a name, it’s a good
idea to provide one.

In T-SQL, there are multiple methods of creating a
column alias, with identical output results.

One method is to use the AS keyword to separate the column or expression from the alias:

AS Keyword

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails;

Another method is to assign the alias before the column or expression, using the equals sign as the
separator:

Alias with Equals Sign

SELECT orderid, unitprice, quantity = qty
FROM Sales.OrderDetails;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-12 Writing SELECT Queries

Finally, you can simply assign the alias immediately following the column name, although this is not a
recommended method:

Alias Following Column Name

SELECT orderid, unitprice, qty quantity
FROM Sales.OrderDetails;

While there is no difference in performance or execution, a variance in readability may cause you to
choose one or the other as a convention.

Warning: Column aliases can also be accidentally created, by omitting a comma between two column
names in the SELECT list.

For example, the following creates an alias for the unitprice column deceptively labeled quantity:

Accidental Alias

SELECT orderid, unitprice quantity
FROM Sales.OrderDetails;

The results:

orderid quantity
--------- --------------------
10248 14.00
10248 9.80
10248 34.80
10248 18.60

As you can see, this could be difficult to identify and fix in a client application. The only way to avoid this
problem is to list columns carefully, separating them with commas and adopting the AS style of aliases, to
make it easier to spot mistakes.

Question: Which of the following statements use correct column aliases?

1. SELECT Name AS ProductName FROM Production.Product

2. SELECT Name = ProductName FROM Production.Product

3. SELECT ProductName == Name FROM Production.Product

4. SELECT ProductName = Name FROM Production.Product

5. SELECT Name AS Product Name FROM Production.Product

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-13

Use Aliases to Refer to Tables

Aliases can also be used in the FROM clause to
refer to a table; this can improve readability and
save redundancy when referencing the table
elsewhere in the query. While this module has
focused on single-table queries, which don’t
necessarily benefit from table aliases, this
technique will prove useful as you learn more
complex queries in subsequent modules.

To create a table alias in a FROM clause, you will
use syntax similar to several of the column alias
techniques.

You can use the keyword AS to separate the table
name from the alias. This style is preferred:

Table Alias using AS

SELECT orderid, unitprice, qty
FROM Sales.OrderDetails AS OD;

You can omit the keyword AS and simply follow the table name with the alias:

Table Alias Without AS

SELECT orderid, unitprice, qty
FROM Sales.OrderDetails OD;

To combine table and column aliases in the same SELECT statement, use the following approach:

Table and Column Aliases Combined

SELECT OD.orderid, OD.unitprice, OD.qty AS Quantity
FROM Sales.OrderDetails AS OD;

 Note: There is no table alias equivalent to the use of the equals sign (=) in a column alias.

As this module focuses on single-table queries, you might not yet see a benefit to using table aliases. In
the next module, you will learn how to retrieve data from multiple tables in a single SELECT statement. In
those queries, the use of table aliases to represent table names will be useful.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-14 Writing SELECT Queries

The Impact of Logical Processing Order on Aliases

When using column aliases, an issue can arise.
Aliases created in the SELECT clause may not be
referred to in others in the query—such as a
WHERE or HAVING clause. This is due to the
logical order query processing. The WHERE and
HAVING clauses are processed before the SELECT
clause and its aliases are evaluated (HAVING and
WHERE clauses will be covered in a separate
module). An exception to this is the ORDER BY
clause.

An example is provided here for illustration and
will run without error:

ORDER BY with Alias

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails
ORDER BY quantity;

However, the following example will return an error, as the WHERE clause has been processed before the
SELECT clause defines the alias:

Incorrect WHERE with Alias

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails
WHERE quantity > 10;

The resulting error message is:

Msg 207, Level 16, State 1, Line 1
Invalid column name 'quantity'.

As a result, you will often need to repeat an expression more than once in the SELECT clause, where you
might create an alias to name the column, and in the WHERE or HAVING clause:

Correct WHERE with Alias

SELECT orderid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
WHERE YEAR(orderdate) = '2008'

Additionally, within the SELECT clause, you might not refer to a column alias that was defined in the same
SELECT statement, regardless of column order.

The following statement will return an error:

Column Alias Used in SELECT Clause

SELECT productid, unitprice AS price, price * qty AS total
FROM Sales.OrderDetails;

The resulting error:

Msg 207, Level 16, State 1, Line 1
Invalid column name 'price'.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-15

Demonstration: Using Column and Table Aliases

In this demonstration, you will see how to:

 Use column and table aliases.

Demonstration Steps
Use Column and Table Aliases

1. In Solution Explorer, open the Demonstration C.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

2. In the Available Databases list, click AdventureWorksLT.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. On the File menu, click Close.

8. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT FirstName LastName

FROM HumanResources.Employees;

You are surprised to find that the query returns the following:

LastName

Fred

Rosalind

Anil

Linda

What error have you made in the SELECT query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-16 Writing SELECT Queries

Lesson 4
Writing Simple CASE Expressions

A CASE expression extends the ability of a SELECT clause to manipulate data as it is retrieved. Often when
writing a query, you need to substitute a value of a column with another value. While you will learn how
to perform this kind of lookup from another table later in this course, you can also perform basic
substitutions using simple CASE expressions in the SELECT clause. In real-world environments, CASE is
often used to help make cryptic data that is held in a column more meaningful.

A CASE expression returns a scalar (single-valued) value based on conditional logic, often with multiple
conditions. As a scalar value, it may be used wherever single values can be used. Besides the SELECT
statement, CASE expressions can be used in WHERE, HAVING, and ORDER BY clauses.

Lesson Objectives
In this lesson, you will learn how to:

 Understand the use of CASE expressions in SELECT clauses.

 Understand the simple form of a CASE expression.

Using CASE Expressions in SELECT Clauses

In T-SQL, CASE expressions return a single, or
scalar, value. Unlike some other programming
languages, in T-SQL, CASE expressions are not
statements, nor do they specify the control of
programmatic flow. Instead, they are used in
SELECT (and other) clauses to return the result of
an expression. The results appear as a calculated
column and, for clarity, should be aliased.

In T-SQL queries, CASE expressions are often used
to provide an alternative value for one stored in
the source table. For example, a CASE expression
might be used to provide a friendly text name for
something stored as a compact numeric code.

Forms of CASE Expressions

In T-SQL, CASE expressions may take one of two
forms—simple CASE, or searched (Boolean) CASE.

Simple CASE expressions, the subject of this lesson,
compare an input value to a list of possible
matching values:

 If a match is found, the first matching value is
returned as the result of the CASE expression.
Multiple matches are not permitted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-17

 If no match is found, a CASE expression returns the value found in an ELSE clause, if one exists.

 If no match is found and no ELSE clause is present, the CASE expression returns a NULL.

For example, the following CASE expression substitutes a descriptive category name for the categoryid
value stored in the Production.Categories table. Note that this is not a JOIN operation; instead, it’s a
substitution using a single table:

CASE Expression

SELECT productid, productname, categoryid,
 CASE categoryid
 WHEN 1 THEN 'Beverages'
 WHEN 2 THEN 'Condiments'
 WHEN 3 THEN 'Confections'
 ELSE 'Unknown Category'
 END AS categoryname
FROM Production.Categories

The results:

productid productname categoryid categoryname
--------- ------------ ---------- ---------------------
101 Tea 1 Beverages
102 Mustard 2 Condiments
103 Dinner Rolls 9 Unknown Category

 Note: The preceding example is presented for illustration only and will not run against the
sample databases provided with the course.

Searched (Boolean) CASE expressions compare an input value to a set of logical predicates or expressions.
The expression can contain a range of values to match against. Like a simple CASE expression, the return
value is found in the THEN clause of the matching value.

Due to their dependence on predicate expressions, which will not be covered until later in this course,
further discussion of searched CASE expressions is beyond the scope of this lesson.

See CASE (Transact-SQL) in the SQL Server 2016 Technical Documentation:

CASE (Transact-SQL)

http://aka.ms/ims4v6

Demonstration: Simple CASE Expressions

In this demonstration, you will see how to:

 Use a simple CASE expression.

Demonstration Steps
Use a Simple CASE Expression

1. In Solution Explorer, open the Demonstration D.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

2. In the Available Databases list, click AdventureWorksLT.

3. Select the code under the comment Step 2, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-18 Writing SELECT Queries

4. Select the code under the comment Step 3, and then click Execute.

5. Close SQL Server Management Studio, without saving changes.

Question: You have the following SELECT query:

SELECT FirstName, LastName, Sex

FROM HumanResources.Employees;

This returns:

FirstName LastName Sex

---------- --------- ----

Maya Steele 1

Adam Brookes 0

Naomi Sharp 1

Pedro Fielder 0

Zachary Parsons 0

How could you make these results clearer?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-19

Lab: Writing Basic SELECT Statements
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You can use your set of business requirements for data to write basic T-SQL queries to
retrieve the specified data from the databases.

Objectives
After completing this lab, you will be able to:

 Write simple SELECT statements.

 Eliminate duplicate rows by using the DISTINCT keyword.

 Use table and column aliases.

 Use a simple CASE expression.

Estimated Time: 40 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Simple SELECT Statements

Scenario
As a business analyst, you want a better understanding of your corporate data. Usually, the best approach
for an initial project is to get an overview of the main tables and columns, so you can better understand
different business requirements. After an initial overview, you will provide a report for the marketing
department, whose staff want to send invitation letters for a new campaign. You will use the TSQL sample
database.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View All the Tables in the ADVENTUREWORKS Database in Object Explorer

3. Write a Simple SELECT Statement That Returns All Rows and Columns from a Table

4. Write a SELECT Statement That Returns Specific Columns

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab03\Starter folder as Administrator.

 Task 2: View All the Tables in the ADVENTUREWORKS Database in Object Explorer
1. Using SSMS, connect to MIA-SQL using Windows® authentication (if you are connecting to an on-

premises instance of SQL Server) or SQL Server authentication.

2. In Object Explorer, expand the TSQL database and expand the Tables folder.

3. Look at the names of the tables in the Sales schema.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-20 Writing SELECT Queries

 Task 3: Write a Simple SELECT Statement That Returns All Rows and Columns from a
Table
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and the T-SQL script Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return all rows and all columns from the Sales.Customers table.

 Note: You can use drag-and-drop functionality to move items like table and column names
from Object Explorer to the query window. Write the same SELECT statement using the drag-and-
drop functionality.

3. You can use drag-and-drop functionality to move items like table and column names from Object
Explorer to the query window. Write the same SELECT statement using the drag-and-drop
functionality.

 Task 4: Write a SELECT Statement That Returns Specific Columns
1. Expand the Sales.Customers table in Object Explorer and expand the Columns folder. Observe all

columns in the table.

2. Write a SELECT statement to return the contactname, address, postalcode, city, and country
columns from the Sales.Customers table.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 1 - Task 3 Result.txt.

4. What is the number of rows affected by the last query? (Tip: Because you are issuing a SELECT
statement against the whole table, the number of rows will be the same as that for the whole
Sales.Customers table.)

Results: After this exercise, you should know how to create simple SELECT statements to analyze existing
tables.

Exercise 2: Eliminating Duplicates Using DISTINCT

Scenario
After supplying the marketing department with a list of all customers for a new campaign, you are asked
to provide a list of all the countries that the customers come from.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Includes a Specific Column

2. Write a SELECT Statement That Uses the DISTINCT Clause

 Task 1: Write a SELECT Statement That Includes a Specific Column
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table showing only the country column.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 2 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-21

 Task 2: Write a SELECT Statement That Uses the DISTINCT Clause
1. Copy the SELECT statement in task 1 and modify it to return only distinct values.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in file D:\Labfiles\Lab03\Solution\Lab Exercise 2 - Task 2 Result.txt.

3. How many rows did the query in task 1 return?

4. How many rows did the query in task 2 return?

5. Under which circumstances do the following queries against the Sales.Customers table return the
same result?

SELECT city, region FROM Sales.Customers;
SELECT DISTINCT city, region FROM Sales.Customers;

6. Is the DISTINCT clause being applied to all columns specified in the query or just the first column?

Results: After this exercise, you should understand how to return only the different (distinct) rows in the
result set of a query.

Exercise 3: Using Table and Column Aliases

Scenario
After receiving the initial list of customers, the marketing department would like to have column titles that
are more readable and a list of all products in the TSQL database.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses a Table Alias

2. Write a SELECT Statement That Uses Column Aliases

3. Write a SELECT Statement That Uses Table and Column Aliases

4. Analyze and Correct the Query

 Task 1: Write a SELECT Statement That Uses a Table Alias
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

3.sql, and ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the contactname and contacttitle columns from the
Sales.Customers table, assigning “C” as the table alias. Use the table alias C to prefix the names of
the two needed columns in the SELECT list. The benefit of using table aliases will become clearer in
future modules, when topics such as joins and subqueries are introduced.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses Column Aliases
1. Write a SELECT statement to return the contactname, contacttitle, and companyname columns.

Assign these with the aliases Name, Title, and Company Name, respectively, to return more human-
friendly column titles for reporting purposes.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 2 Result.txt. Notice specifically the
titles of the columns in the desired output.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-22 Writing SELECT Queries

 Task 3: Write a SELECT Statement That Uses Table and Column Aliases
1. Write a query to display the productname column from the Production.Products table using “P” as

the table alias and Product Name as the column alias.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 3 Result.txt.

 Task 4: Analyze and Correct the Query
1. A developer has written a query to retrieve two columns (city and region) from the Sales.Customers

table. When the query is executed, it returns only one column. Your task is to analyze the query,
correct it to return two columns, and explain why the query returned only one.

SELECT city country
FROM Sales.Customers;

2. Execute the query exactly as written inside a query window and observe the result.

3. Correct the query to return the city and country columns from the Sales.Customers table.

Why did the query return only one column? What was the title of the column in the output? What is
the best practice to avoid such errors when using aliases for columns?

Results: After this exercise, you will know how to use aliases for table and column names.

Exercise 4: Using a Simple CASE Expression

Scenario
Your company has a long list of products and the members of the marketing department would like to
have product category information in their reports. They have supplied you with a document containing
the following mapping between the product category IDs and their names:

categoryid categoryname

1 Beverages

2 Condiments

3 Confections

4 Dairy Products

5 Grains/Cereals

6 Meat/Poultry

7 Produce

8 Seafood

They have an active marketing campaign, and would like to include product category information in their
reports.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-23

The main tasks for this exercise are as follows:

1. Write a SELECT Statement

2. Write a SELECT Statement That Uses a CASE Expression

3. Write a SELECT Statement That Uses a CASE Expression to Differentiate Campaign-Focused Products

 Task 1: Write a SELECT Statement
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to display the categoryid and productname columns from the
Production.Products table.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses a CASE Expression
1. Enhance the SELECT statement in task 1 by adding a CASE expression that generates a result column

named categoryname. The new column should hold the translation of the category ID to its
respective category name, based on the mapping table supplied earlier. Use the value “Other” for any
category IDs not found in the mapping table.

2. Execute the written statement and compare the results that you achieved with the desired output
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement That Uses a CASE Expression to Differentiate
Campaign-Focused Products
1. Modify the SELECT statement in task 2 by adding a new column named iscampaign. This will show

the description “Campaign Products” for the categories Beverages, Produce, and Seafood, and the
description “Non-Campaign Products” for all other categories.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 3 Result.txt.

Results: After this exercise, you should know how to use CASE expressions to write simple conditional
logic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-24 Writing SELECT Queries

Module Review and Takeaways
In this module, you have learned how to:

 Write simple SELECT statements.

 Eliminate duplicates using the DISTINCT clause.

 Use table and column aliases.

 Write simple CASE expressions.

 Best Practice: Terminate all T-SQL statements with a semicolon. This will make your code
more readable, avoid certain parsing errors, and protect your code against changes in future
versions of SQL Server. Consider standardizing your code on the AS keyword for labeling column
and table aliases. This will make it easier to read and avoids accidental aliases.

Review Question(s)
Question: Why is the use of SELECT * not a recommended practice?

Real-world Issues and Scenarios
You can create a column alias without using the AS keyword, something you are likely to see in code
samples online, or written by developers you work with. While the T-SQL engine will parse this without
issue, there is a problem when a comma is omitted between column names—the first column will take the
name of the second column as its alias. Not only will the column have a misleading name, but you will
also have one column too few in your result set. Always use the AS keyword to avoid this problem.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-1

Module 4
Querying Multiple Tables

Contents:
Module Overview 4-1

Lesson 1: Understanding Joins 4-2

Lesson 2: Querying with Inner Joins 4-7

Lesson 3: Querying with Outer Joins 4-11

Lesson 4: Querying with Cross Joins and Self Joins 4-15

Lab: Querying Multiple Tables 4-19

Module Review and Takeaways 4-24

Module Overview
In real-world environments, it is likely that the data you need to query is stored in multiple locations. You
have already learned how to write basic single-table queries. In this module, you will learn how to write
queries that combine data from multiple sources in Microsoft® SQL Server®. You will write queries
containing joins, which allow you to retrieve data from two (or more) tables, based on data relationships
between the tables.

In this module, you will learn how to write queries that combine data from multiple sources in Microsoft
SQL Server 2016.

Objectives
After completing this module, you will be able to:

 Describe how multiple tables may be queried in a SELECT statement using joins.

 Write queries that use inner joins.

 Write queries that use outer joins.

 Write queries that use self joins and cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-2 Querying Multiple Tables

Lesson 1
Understanding Joins

In this lesson, you will learn the fundamentals of joins in SQL Server. You will discover how the FROM
clause in a T-SQL SELECT statement creates intermediate virtual tables that will be consumed by
subsequent phases of the query. You will learn how an unrestricted combination of rows from two tables
yields a Cartesian product. This module also covers the common join types in T-SQL multitable queries.

The FROM Clause and Virtual Tables

You have already learned about the logical order
of operations performed when SQL Server
processes a query. You will recall that the FROM
clause of a SELECT statement is the first phase to
be processed. This clause determines which table
or tables will be the source of rows for the query.
As you will see in this module, this holds true
whether you are querying a single table or
bringing together multiple tables as the source of
your query. To learn about the additional
capabilities of the FROM clause, it is useful to think
of the clause function as creating and populating
a virtual table. This virtual table will hold the output of the FROM clause and be used subsequently by
other phases of the SELECT statement, such as the WHERE clause. As you add extra functionality, such as
join operators, to a FROM clause, it will be helpful to think of the purpose of the FROM clause elements as
either to add rows to, or remove rows from, the virtual table.

 Reader Aid: The virtual table created by a FROM clause is a logical entity only. In SQL
Server, no physical table is created, whether persistent or temporary, to hold the results of the
FROM clause, as it is passed to the WHERE clause or other subsequent phases.

The syntax for the SELECT statement you have used for earlier queries in this course has appeared as
follows:

SELECT Syntax

SELECT ...
FROM <table> AS <alias>;

You have learned that the FROM clause is processed first, and as a result, any table aliases you create
there may be referenced in the SELECT clause. You will see numerous examples of table aliases in this
module. While these aliases are optional, except in the case of self join queries, you will quickly see how
they can be a convenient tool when writing queries. Compare the following two queries, which have the
same output but differ in their use of aliases. (Note that the examples use a JOIN clause, which will be
covered later in this module).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-3

The first query uses no table aliases:

Without Table Aliases

USE TSQL ;
GO
SELECT Sales.Orders.orderid, Sales.Orders.orderdate,
 Sales.OrderDetails.productid,Sales.OrderDetails.unitprice,
 Sales.OrderDetails.qty
FROM Sales.Orders
JOIN Sales.OrderDetails ON Sales.Orders.orderid = Sales.OrderDetails.orderid ;

The second example retrieves the same data but uses table aliases:

With Table Aliases

USE TSQL ;
GO
SELECT o.orderid, o.orderdate,
 od.productid, od.unitprice,
 od.qty
FROM Sales.Orders AS o
JOIN Sales.OrderDetails AS od ON o.orderid = od.orderid ;

As you can see, the use of table aliases improves the readability of the query, without affecting the
performance. It is strongly recommended that you use table aliases in your multitable queries.

 Reader Aid: Once a table has been designated with an alias in the FROM clause, it is best
practice to use the alias when referring to columns from that table in other clauses.

Join Terminology: Cartesian Product

When learning about writing multitable queries in
T-SQL, it is important to understand the concept
of Cartesian products. In mathematics, this is the
product of two sets. The product of a set of two
items and a set of six is a set of 12 items—or 6 x 2.
In databases, a Cartesian product is the result of
joining every row of one input table to all rows of
another input table. The product of a table with 10
rows and a table with 100 rows is a result set with
1,000 rows. For most T-SQL queries, a Cartesian
product is not the desired outcome. Typically, a
Cartesian product occurs when two input tables
are joined without considering any logical relationships between them. With no information about
relationships, the SQL Server query processor will output all possible combinations of rows. While this can
have some practical applications, such as creating a table of numbers or generating test data, it is not
typically useful and can have severe performance effects. You will learn a useful application of Cartesian
joins later in this module.

 Reader Aid: In the next topic, you will compare two different methods for specifying the
syntax of a join. You will see that one method may lead you toward writing accidental Cartesian
product queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-4 Querying Multiple Tables

Overview of Join Types

To populate the virtual table produced by the
FROM clause in a SELECT statement, SQL Server
uses join operators. These add or remove rows
from the virtual table, before it is handed off to
subsequent logical phases of the SELECT
statement:

 A cross join operator (CROSS JOIN) adds all
possible combinations of the two input tables'
rows to the virtual table. Any filtering of the
rows will happen in a WHERE clause. For most
querying purposes, this operator is to be
avoided.

 An inner join operator (INNER JOIN, or just JOIN) first creates a Cartesian product, and then filters the
results using the predicate supplied in the ON clause, removing any rows from the virtual table that
do not satisfy the predicate. The inner join is a very common type of join for retrieving rows with
attributes that match across tables, such as matching Customers to Orders by a common custid.

 An outer join operator (LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN) first creates a
Cartesian product, and like an inner join, filters the results to find rows that match in each table.
However, all rows from one table are preserved, and added back to the virtual table after the initial
filter is applied. NULLs are placed on attributes where no matching values are found.

 Reader Aid: Unless otherwise qualified with CROSS or OUTER, the JOIN operator defaults
to an INNER join.

T-SQL Syntax Choices

Throughout the history of SQL Server, the product
has changed to keep pace with variations in the
American National Standards Institute (ANSI)
standards for the SQL language. One of the most
notable places where these changes are visible is
in the syntax for the join operator in a FROM
clause. In ANSI SQL-89, no ON operator was
defined. Joins were represented in a comma-
separated list of tables, and any filtering, such as
for an inner join, was performed in the WHERE
clause. This syntax is still supported by SQL Server,
but due to the complexity of representing the
filters for an outer join in the WHERE clause, in addition to any other filtering, it is not recommended here.
Additionally, if a WHERE clause is accidentally omitted, ANSI SQL-89-style joins can easily become
Cartesian products and cause performance problems.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-5

The following queries illustrate this syntax and the potential problem:

Cartesian Product

USE TSQL;
GO
/* This is ANSI SQL-89 syntax for an inner join, with the filtering performed in the
WHERE clause. */
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o
WHERE c.custid = o.custid;
....
(830 row(s) affected)

/*
This is ANSI SQL-89 syntax for an inner join, omitting the WHERE clause and causing an
inadvertent Cartesian join.
*/

SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o;
...
(75530 row(s) affected)

With the advent of the ANSI SQL-92 standard, support for the ON clause was added. T-SQL also supports
this syntax. Joins are represented in the FROM clause by using the appropriate JOIN operator. The logical
relationship between the tables, which becomes a filter predicate, is represented with the ON clause.

The following example restates the previous query with the newer syntax:

JOIN Clause

SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c JOIN Sales.Orders AS o
ON c.custid = o.custid;

 Reader Aid: The ANSI SQL-92 syntax makes it more difficult to create accidental Cartesian
joins. Once the keyword JOIN has been added, a syntax error will be raised if an ON clause is
missing.

Demonstration: Understanding Joins

In this demonstration, you will see how to:

 Use joins.

Demonstration Steps
Use Joins

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod04\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter. When the script has completed, press any key.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-6 Querying Multiple Tables

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod04\Demo folder.

7. In Solution Explorer, expand Queries, and then double-click the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

You have the following T-SQL query:

SELECT o.ID AS OrderID, o.CustomerName, p.ProductName, p.ModelNumber,
FROM Sales.Orders AS o
JOIN Sales.Products AS p
ON o.ProductID = p.ID;

Which of the following types of join will the query perform?

Select the correct answer.

 A cross join

 An inner join

 An outer left join

 An outer right join

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-7

Lesson 2
Querying with Inner Joins

In this lesson, you will learn how to write inner join queries, the most common type of multitable query in
a business environment. By expressing a logical relationship between the tables, you will retrieve only
those rows with matching attributes present in both.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe inner joins.

 Write queries using inner joins.

 Describe the syntax of an inner join.

Understanding Inner Joins

T-SQL queries that use inner joins are the most
common types to solve many business problems,
especially in highly normalized database
environments. To retrieve data that has been
stored across multiple tables, you will often need
to reassemble it via inner join queries. As you have
learned, an inner join begins its logical processing
phase as a Cartesian product, which is then filtered
to remove any rows that don't match the
predicate.

In SQL-89 syntax, that predicate is in the WHERE
clause; in SQL-92 syntax, that predicate is within
the FROM clause in the ON clause:

SQL-89 and SQL-92 Join Syntax Compared

--ANSI SQL-89 syntax
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o
WHERE c.custid = o.custid;

--ANSI SQL-92 syntax
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c JOIN Sales.Orders AS o
ON c.custid = o.custid;

From a performance standpoint, you will find that the query optimizer in SQL Server does not favor one
syntax over the other. However, as you learn about additional types of joins, especially outer joins, you will
likely decide that you prefer to use the SQL-92 syntax and filter in the ON clause. Keeping the join filter
logic in the ON clause and leaving other data filtering in the WHERE clause will make your queries easier
to read and test.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-8 Querying Multiple Tables

Using the ANSI SQL-92 syntax, let’s examine the steps by which SQL Server will logically process this
query. Line numbers are added for clarity and are not submitted to the query engine for execution:

ANSI-92 Join

1) SELECT c.companyname, o.orderdate
2) FROM Sales.Customers AS c
3) JOIN Sales.Orders AS o
4) ON c.custid = o.custid;

As you learned earlier, the FROM clause will be processed before the SELECT clause. Let’s track the
processing, beginning with line 2:

 The FROM clause designates the Sales.Customers table as one of the input tables, giving it the alias of
“c”.

 The JOIN operator in line 3 reflects the use of an INNER join (the default type in T-SQL) and
designates Sales.Orders as the other input table, which has an alias of “o”.

 SQL Server will perform a logical Cartesian join on these tables and pass the results to the next phase
in the virtual table. (Note that the physical processing of the query may not actually perform the
Cartesian product operation, depending on the optimizer's decisions.)

 Using the ON clause, SQL Server will filter the virtual table, retaining only those rows where a custid
value from the “c” table (Sales.Customers has been replaced by the alias) matches a custid from the
“o” table (Sales.Orders has been replaced by an alias).

 The remaining rows are left in the virtual table and handed off to the next phase in the SELECT
statement. In this example, the virtual table is next processed by the SELECT clause, and only two
columns are returned to the client application.

 The result? A list of customers who have placed orders. Any customers who have never placed an
order have been filtered out by the ON clause, as have any orders that happen to have a customer ID
that doesn't correspond to an entry in the customer list.

Inner Join Syntax

When writing queries using inner joins, consider
the following guidelines:

 As you have seen, table aliases are preferred,
not only for the SELECT list, but also for
expressing the ON clause.

 Inner joins may be performed on a single
matching attribute, such as an orderid, or on
multiple matching attributes, such as the
combination of orderid and productid. Joins
that match multiple attributes are called
composite joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-9

 The order in which tables are listed and joined in the FROM clause does not matter to the SQL Server
optimizer. (This will not be the case for OUTER JOIN queries in the next topic.) Conceptually, joins will
be evaluated from left to right.

 Use the JOIN keyword once for each two tables in the FROM list. For a two-table query, specify one
join. For a three-table query, you will use JOIN twice—once between the first two tables, and once
again between the output of the first two tables and the third table.

Inner Join Examples

The following are some examples of inner joins:

This query performs a join on a single matching
attribute, relating the categoryid from the
Production.Categories table to the categoryid
from the Production.Products table:

Inner Join Example

SELECT c.categoryid, c.categoryname,
p.productid, p.productname
FROM Production.Categories AS c
JOIN Production.Products AS p
ON c.categoryid = p.categoryid;

This query performs a composite join on two matching attributes, relating city and country attributes from
Sales.Customers to HR.Employees. Note the use of the DISTINCT operator to filter out duplicate
occurrences of city, country:

Inner Join Example

SELECT DISTINCT e.city, e.country
FROM Sales.Customers AS c
JOIN HR.Employees AS e
ON c.city = e.city AND c.country = e.country;

 Reader Aid: The demonstration code for this lesson also uses the DISTINCT operator to
filter duplicates.

This next example shows how an inner join may be extended to include more than two tables. Note that
the Sales.OrderDetails table is joined not to the Sales.Orders table, but to the output of the JOIN between
Sales.Customers and Sales.Orders. Each instance of JOIN ... ON performs its own population and filtering
of the virtual output table. The SQL Server query optimizer determines the order in which the joins and
filtering will be performed.

This next example shows how an inner join may be extended to include more than two tables:

Inner Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate, od.productid, od.qty
FROM Sales.Customers AS c
JOIN Sales.Orders AS o
ON c.custid = o.custid
JOIN Sales.OrderDetails AS od
ON o.orderid = od.orderid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-10 Querying Multiple Tables

Demonstration: Querying with Inner Joins

In this demonstration, you will see how to:

 Use inner joins.

Demonstration Steps
Use Inner Joins

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following T-SQL query:

SELECT HumanResources.Employees.ID, HumanResources.Employers.ID AS
CompanyID,

 HumanResources.Employees.Name, HumanResources.Employers.Name AS
CompanyName

FROM HumanResources.Employees

JOIN HumanResources.Employers

ON HumanResources.Employees.EmployerID =
HumanResources.Employers.ID;

How can you improve the readability of this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-11

Lesson 3
Querying with Outer Joins

In this lesson, you will learn how to write queries that use outer joins. While not as common as inner joins,
the use of outer joins in a multitable query can provide an alternative view of your business data. As with
inner joins, you will express a logical relationship between the tables. However, you will retrieve not only
rows with matching attributes, but also all rows present in one of the tables, whether or not there is a
match in the other table.

Lesson Objectives
After completing this lesson, you will be able to:

 Understand the purpose and function of outer joins.

 Write queries using outer joins.

 Combine an OUTER JOIN operator in a FROM clause with a nullability test in a WHERE clause to
reveal nonmatching rows.

Understanding Outer Joins

In the previous lesson, you learned how to use
inner joins to match rows in separate tables. As
you saw, SQL Server built the results of an inner
join query by filtering out rows that failed to meet
the conditions expressed in the ON clause
predicate. The result is that only rows that
matched from both tables were displayed. With an
outer join, you may choose to display all the rows
from one table, along with those that match from
the second table. Let's look at an example, then
explore the process.

First, examine the following query, written as an
inner join:

Inner Join

USE AdventureWorks;
GO
SELECT c.CustomerID, soh.SalesOrderID
FROM Sales.Customer AS c JOIN Sales.SalesOrderHeader AS soh
ON c.CustomerID = soh.CustomerID
--(31465 row(s) affected)

Note that this example uses the AdventureWorks2016 database for these samples. When written as an
inner join, the query returns 31,465 rows. These rows represent a match between customers and orders.
Only those CustomerIDs that are in both tables will appear in the results. Only customers who have placed
orders will be returned.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-12 Querying Multiple Tables

Now, let’s examine the following query, written as an outer left join:

Outer Left Join

USE AdventureWorks;
GO

SELECT c.CustomerID, soh.SalesOrderID
FROM Sales.Customer AS c LEFT OUTER JOIN Sales.SalesOrderHeader AS soh
ON c.CustomerID = soh.CustomerID
--(32166 row(s) affected)

This example uses a LEFT OUTER JOIN operator which, as you will learn, directs the query processor to
preserve all rows from the table on the left (Sales.Customer) and displays the SalesOrderID values for
matching rows in Sales.SalesOrderHeader. However, there are more rows returned in this example. All
customers are returned, whether or not they have placed an order. As you will see in this lesson, an outer
join will display all the rows from one side of the join or another, whether or not they match.

What does an outer join query display in columns where there was no match? In this example, there are
no matching orders for 701 customers. In place of the SalesOrderID column, SQL Server will output NULL
where values are otherwise missing.

Outer Join Syntax

When writing queries using outer joins, consider
the following guidelines:

 As you have seen, table aliases are preferred
not only for the SELECT list, but also for
expressing the ON clause.

 Outer joins are expressed using the keywords
LEFT, RIGHT, or FULL preceding OUTER JOIN.
The purpose of the keyword is to indicate
which table (on which side of the keyword
JOIN) should be preserved and have all its
rows displayed, match or no match.

 As with inner joins, outer joins may be performed on a single matching attribute, such as an orderid,
or on multiple matching attributes, such as orderid and productid.

 Unlike inner joins, the order in which tables are listed and joined in the FROM clause does matter, as
it will determine whether you choose LEFT or RIGHT for your join.

 Multitable joins are more complex when an OUTER JOIN is present. The presence of NULLs in the
results of an outer join may cause issues if the intermediate results are then joined, via an inner join,
to a third table. Rows with NULLs may be filtered out by the second join's predicate.

 To display only rows where no match exists, add a test for NULL in a WHERE clause following an
OUTER JOIN predicate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-13

Outer Join Examples

The following are some examples of outer joins:

This query displays all customers and provides
information about each of their orders if any exist:

Outer Join Example

USE TSQL;
GO
SELECT c.custid, c.companyname, o.orderid, o.orderdate
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o
ON c.custid =o.custid;

This query displays only customers who have never placed an order:

Outer Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o
ON c.custid =o.custid
WHERE o.orderid IS NULL;

Demonstration: Querying with Outer Joins

In this demonstration, you will see how to:

 Use outer joins.

Demonstration Steps
Use Outer Joins

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-14 Querying Multiple Tables

Check Your Knowledge

Question

You have a table named PoolCars and a table named Bookings in your ResourcesScheduling
database. You want to return all the pool cars for which there are zero bookings. Which of the
following queries should you use?

Select the correct answer.

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc, ResourcesScheduling.Bookings AS b
WHERE pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
RIGHT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
LEFT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID
WHERE b.BookingID IS NULL;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-15

Lesson 4
Querying with Cross Joins and Self Joins

In this lesson, you will learn about additional types of joins, which are useful in some more specialized
scenarios.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe a use for a cross join.

 Write queries that use cross joins.

 Describe a use for a self join.

 Write queries that use self joins.

Understanding Cross Joins

Cross join queries create a Cartesian product that,
as you have learned in this module so far, are to
be avoided. Although you have seen a means to
create one with ANSI SQL-89 syntax, you haven't
seen how or why to do so with ANSI SQL-92. This
topic will revisit cross joins and Cartesian products.

To explicitly create a Cartesian product, you would
use the CROSS JOIN operator.

This will create a result set with all possible
combinations of input rows:

Cross Join

SELECT ...
FROM table1 AS t1 CROSS JOIN table2 AS t2;

While this is not typically a desired output, there are a few practical applications for writing an explicit
cross join:

 Creating a table of numbers, with a row for each possible value in a range.

 Generating large volumes of data for testing. When cross joined to itself, a table with as few as 100
rows can readily generate 10,000 output rows with very little work from you.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-16 Querying Multiple Tables

Cross Join Syntax

When writing queries with CROSS JOIN, consider
the following:

 There is no matching of rows performed, and
therefore no ON clause is required.

 To use ANSI SQL-92 syntax, separate the input
table names with the CROSS JOIN operator.

Cross Join Examples

The following is an example of using CROSS JOIN to create
all combinations of two input sets:

Using the TSQL sample, this will take nine employee first
and last names to generate 81 combinations:

Cross Join Example

SELECT e1.firstname, e2.lastname
FROM HR.Employees e1 CROSS JOIN HR.Employees e2;

Understanding Self Joins

So far, the joins you have learned about have
involved separate multiple tables. There may be
scenarios in which you need to compare and
retrieve data stored in the same table. For
example, in a classic human resources application,
an Employees table might include information
about the supervisor of each employee in the
employee's own row. Each supervisor is also listed
as an employee. To retrieve the employee
information and match it to the related supervisor,
you can use the table twice in your query, joining
it to itself for the purposes of the query.

There are other scenarios in which you will want to compare rows in a table with one another. As you
have seen, it's fairly easy to compare columns in the same row using T-SQL, but how to compare values
from different rows (such as a row which stores a starting time with another row in the same table that
stores a corresponding stop time) is less obvious. Self joins are a useful technique for these types of
queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-17

To accomplish tasks like this, you should consider the following guidelines:

 Create two instances of the same table in the FROM clause, and join them as needed, using inner or
outer joins.

 Use table aliases to create two separate aliases for the same table. At least one of these must have an
alias.

 Use the ON clause to provide a filter using separate columns from the same table.

The following example, which you will examine closely in the next topic, illustrates these guidelines:

This query retrieves employees and their matching manager information from the Employees table joined
to itself:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS mgrname
 FROM HR.Employees AS e
 JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

This yields results like the following:

empid empname title mgrid mgrname
----- ------------ --------------------- ----- -------
2 Funk Vice President, Sales 1 Davis
3 Lew Sales Manager 2 Funk
4 Peled Sales Representative 3 Lew
5 Buck Sales Manager 2 Funk
6 Suurs Sales Representative 5 Buck
7 King Sales Representative 5 Buck
8 Cameron Sales Representative 3 Lew
9 Dolgopyatova Sales Representative 5 Buck

Self Join Examples

The following are some examples of self joins:

This query returns all employees, along with the
name of each employee’s manager, when a
manager exists (inner join). Note that an employee
with no manager listed will be missing from the
results:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS mgrname
 FROM HR.Employees AS e
 JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-18 Querying Multiple Tables

This query returns all employees with the name of each manager (outer join). This restores the missing
employee, who turns out to be a CEO with no manager:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS mgrname
 FROM HR.Employees AS e
 LEFT OUTER JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

Demonstration: Querying with Cross Joins and Self Joins

In this demonstration, you will see how to:

 Use self joins and cross joins.

Demonstration Steps
Use Self Joins and Cross Joins

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Close SQL Server Management Studio without saving any files.

Question: You have two tables named FirstNames and LastNames. You want to generate a
set of fictitious full names from this data. There are 150 entries in the FirstNames table and
250 entries in the LastNames table. You use the following query:

SELECT (f.Name + ' ' + l.Name) AS FullName

FROM FirstNames AS f

CROSS JOIN LastNames AS l

How many fictitious full names will be returned by this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-19

Lab: Querying Multiple Tables
Scenario
You are an Adventure Works business analyst who will be writing reports using corporate databases
stored in SQL Server 2016. You have been given a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. You notice that the data is stored in
separate tables, so you will need to write queries using various join operations.

Objectives
After completing this lab, you will be able to:

 Write queries that use inner joins.

 Write queries that use multiple-table inner joins.

 Write queries that use self joins.

 Write queries that use outer joins

 Write queries that use cross joins.

Estimated Time: 50 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Inner Joins

Scenario
You no longer need the supplied mapping information between categoryid and categoryname because
you now have the Production.Categories table with the needed mapping rows. Write a SELECT statement
using an inner join to retrieve the productname column from the Production.Products table and the
categoryname column from the Production.Categories table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement That Uses an Inner Join

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab04\Starter folder as Administrator.

 Task 2: Write a SELECT Statement That Uses an Inner Join
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return the productname column from the Production.Products
table (use table alias “p”) and the categoryname column from the Production.Categories table (use
table alias “c”) using an inner join.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-20 Querying Multiple Tables

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab04\Solution\52 - Lab Exercise 1 - Task 2 Result.txt.

4. Which column did you specify as a predicate in the ON clause of the join? Why?

5. Let us say that there is a new row in the Production.Categories table and this new product category
does not have any products associated with it in the Production.Products table. Would this row be
included in the result of the SELECT statement written in task 1? Please explain.

Results: After this exercise, you should know how to use an inner join between two tables.

Exercise 2: Writing Queries That Use Multiple-Table Inner Joins

Scenario
The sales department would like a report of all customers who placed at least one order, with detailed
information about each one. A developer prepared an initial SELECT statement that retrieves the custid
and contactname columns from the Sales.Customers table and the orderid column from the Sales.Orders
table. You should observe the supplied statement and add additional information from the
Sales.OrderDetails table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Change the Table Aliases

4. Add an Additional Table and Columns

 Task 1: Execute the T-SQL Statement
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. The developer has written this query:

SELECT
custid, contactname, orderid
FROM Sales.Customers
INNER join Sales.Orders ON Customers.custid = Orders.custid;

Execute the query exactly as written inside a query window and observe the result.

3. An error is shown. What is the error message? Why do you think this happened?

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Notice that there are full source table names written as table aliases.

2. Apply the needed changes to the SELECT statement so that it will run without an error. Test the
changes by executing the T-SQL statement.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab04\Solution\62 - Lab Exercise 2 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-21

 Task 3: Change the Table Aliases
1. Copy the T-SQL statement from task 2 and modify it to use the table aliases “c” for the

Sales.Customers table and “o” for the Sales.Orders table.

2. Execute the written statement and compare the results with those in task 2.

3. Change the prefix of the columns in the SELECT statement with full source table names and execute
the statement.

4. There is an error. Why?

5. Change the SELECT statement to use the table aliases written at the beginning of the task.

 Task 4: Add an Additional Table and Columns
1. Copy the T-SQL statement from task 3 and modify it to include three additional columns from the

Sales.OrderDetails table: productid, qty, and unitprice.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\63 - Lab Exercise 2 - Task 4 Result.txt.

Results: After this exercise, you should have a better understanding of why aliases are important and how
to do a multiple-table join.

Exercise 3: Writing Queries That Use Self Joins

Scenario
The HR department would like a report showing employees and their managers. They want to see the
lastname, firstname, and title columns from the HR.Employees table for each employee, and the same
columns for the employee’s manager.

The main tasks for this exercise are as follows:

1. Write a Basic SELECT Statement

2. Write a Query That Uses a Self Join

 Task 1: Write a Basic SELECT Statement
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. To better understand the needed tasks, you will first write a SELECT statement against the
HR.Employees table showing the empid, lastname, firstname, title, and mgrid columns.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\72 - Lab Exercise 3 - Task 1 Result.txt. Notice the
values in the mgrid column. The mgrid column is in a relationship with the empid column. This is
called a self-referencing relationship.

 Task 2: Write a Query That Uses a Self Join
1. Copy the SELECT statement from task 1 and modify it to include additional columns for the manager

information (lastname, firstname) using a self join. Assign the aliases mgrlastname and mgrfirstname
respectively, to distinguish the manager names from the employee names.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\73 - Lab Exercise 3 - Task 2 Result.txt. Notice the
number of rows returned.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-22 Querying Multiple Tables

3. Is it mandatory to use table aliases when writing a statement with a self join? Can you use a full
source table name as an alias? Please explain.

4. Why did you get fewer rows in the T-SQL statement under task 2 compared to task 1?

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
self joins.

Exercise 4: Writing Queries That Use Outer Joins

Scenario
The sales department was satisfied with the report you produced in exercise 2. Now sales staff would like
to change the report to show all customers, even if they did not have any orders, and still include order
information for the customers who did. You need to write a SELECT statement to retrieve all rows from
Sales.Customers (columns custid and contactname) and the orderid column from the table Sales.Orders.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses an Outer Join

 Task 1: Write a SELECT Statement That Uses an Outer Join
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 81 -

Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the Sales.Customers
table and the orderid column from the Sales.Orders table. The statement should retrieve all rows from
the Sales.Customers table.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

4. Notice the values in the column orderid. Are there any missing values (marked as NULL)? Why?

Results: After this exercise, you should have a basic understanding of how to write T-SQL statements that
use outer joins.

Exercise 5: Writing Queries That Use Cross Joins

Scenario
The HR department would like to prepare a personalized calendar for each employee. The IT department
supplied you with T-SQL code that will generate a table with all dates for the current year. Your job is to
write a SELECT statement that would return all rows in this new calendar date table for each row in the
HR.Employees table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Write a SELECT Statement That Uses a Cross Join

3. Drop the HR.Calendar Table

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-23

 Task 1: Execute the T-SQL Statement
1. Open the T-SQL script 91 - Lab Exercise 5.sql. Ensure that you are connected to the TSQL database.

2. Execute the T-SQL code under task 1. Don’t worry if you do not understand the provided T-SQL code,
as it is used here to give a more realistic example for a cross join in the next task.

 Task 2: Write a SELECT Statement That Uses a Cross Join
1. Write a SELECT statement to retrieve the empid, firstname, and lastname columns from the

HR.Employees table and the calendardate column from the HR.Calendar table.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\92 - Lab Exercise 5 - Task 2 Result.txt.

Note: The dates from the query might not exactly match the solution file.

3. How many rows are returned by the query? There are nine rows in the HR.Employees table. Try to
calculate the total number of rows in the HR.Calendar table.

 Task 3: Drop the HR.Calendar Table
 Execute the provided T-SQL statement to remove the HR.Calendar table.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-24 Querying Multiple Tables

Module Review and Takeaways
In this module, you have learned how to:

 Describe how multiple tables may be queried in a SELECT statement using joins.

 Write queries that use inner joins.

 Write queries that use outer joins.

 Write queries that use self joins and cross joins.

 Best Practice:
 Table aliases should always be defined when joining tables.
 Joins should be expressed using SQL-92 syntax, with JOIN and ON keywords.

Review Question(s)
Question: How does an inner join differ from an outer join?

Question: Which join types include a logical Cartesian product?

Question: Can a table be joined to itself?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-1

Module 5
Sorting and Filtering Data

Contents:
Module Overview 5-1

Lesson 1: Sorting Data 5-2

Lesson 2: Filtering Data with Predicates 5-6

Lesson 3: Filtering Data with TOP and OFFSET-FETCH 5-10

Lesson 4: Working with Unknown Values 5-16

Lab: Sorting and Filtering Data 5-20

Module Review and Takeaways 5-25

Module Overview
In this module, you will learn how to enhance a query to limit the number of rows that the query returns,
and control the order in which the rows are displayed.

Earlier in this course, you learned that, according to relational theory, sets of data do not include any
definition of a sort order. Therefore, if you require the output of a query to be displayed in a certain order,
you should add an ORDER BY clause to your SELECT statement. In this module, you will learn how to write
a query using ORDER BY to control the display order.

You have already learned how to build a FROM clause to return rows from one or more tables. It is
unlikely that you will always want to return all rows from the source. For performance reasons, in addition
to the needs of your client application or report, you will want to limit which rows are returned. As you
will learn in this module, you can limit the rows selected with a WHERE clause based on a predicate; you
can also limit the number of rows with a TOP, or OFFSET and FETCH clause, based on the order of the
rows selected.

When you work with real-world data in queries, you may encounter situations where values are missing. It
is important to write queries that can handle missing values correctly. In this module, you will learn about
handling missing and unknown results.

Objectives
Filter data with predicates in the WHERE clause:

 Sort data using ORDER BY.

 Filter data in the SELECT clause with TOP.

 Filter data with OFFSET and FETCH.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-2 Sorting and Filtering Data

Lesson 1
Sorting Data

In this lesson, you will learn how to add an ORDER BY clause to a query to control the order of rows
displayed in the output of the query.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the ORDER BY clause.

 Describe the ORDER BY clause syntax.

 List examples of the ORDER BY clause.

Using the ORDER BY Clause

In the logical order of query processing, ORDER BY
is the last phase of a SELECT statement to be
executed. ORDER BY enables you to control the
sorting of rows as they are output from the query
to the client application. Without an ORDER BY
clause, SQL Server does not guarantee the order of
rows—in keeping with relational theory.

To sort the output of your query, you will add an
ORDER BY clause in this form:

ORDER BY Clause

SELECT <select_list>
FROM <table_source>
ORDER BY <order_by_list> [ASC|DESC];

ORDER BY can take several types of element in its list:

Columns by name. Additional columns beyond the first specified in the list will be used as tiebreakers for
nonunique values in the first column.

Column aliases. Remember that ORDER BY is processed after the SELECT clause and therefore has access
to aliases defined in the SELECT list.

Columns by position in the SELECT clause. This is not recommended, because of diminished readability
and the extra care required to keep the ORDER BY list up to date with any changes made to the SELECT
list column order.

 Columns not detailed in the SELECT list, but part of tables listed in the FROM clause. If the
query uses a DISTINCT option, any columns in the ORDER BY list must be included in the SELECT list.

 Note: ORDER BY may also include a COLLATE clause, which provides a way to sort by a
specific character collation, instead of the collation of the column in the table. Collations will be
discussed further later in this course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-3

In addition to specifying which columns should be used to determine the sort order, you may also control
the direction of the sort by using ASC for ascending (A-Z, 0-9) or DESC for descending (Z-A, 9-0).
Ascending sorts are the default. Each column may be provided with a separate order, as in the following
example:

Employees will be listed from most recent to least recent hire, with employees hired on the same date
listed alphabetically by last name:

Ascending and Descending Sort

USE TSQL;
GO
SELECT hiredate, firstname, lastname
FROM HR.Employees
ORDER BY hiredate DESC, lastname ASC;

For additional information on the ORDER BY clause, see the SQL Server 2016 Technical Documentation at:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

ORDER BY Clause Syntax

The syntax of the ORDER BY clause appears as
follows:

ORDER BY Clause

ORDER BY <order_by_list>
OFFSET <offset_value> ROW|ROWS FETCH
FIRST|NEXT <fetch_value> ROW|ROWS ONLY

 Note: The use of the OFFSET-FETCH option
in the ORDER BY clause will be covered later in this
module.

Most variations of ORDER BY will occur in the ORDER BY list. To specify columns by name, with the default
ascending order, use the following syntax:

ORDER BY List

ORDER BY <column_name_1>, <column_name_2>;

A fragment of code using columns from the Sales.Customers table would look like this:

ORDER BY List Example

ORDER BY country, region, city;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-4 Sorting and Filtering Data

To specify columns by aliases defined in the SELECT clause, use the following syntax:

ORDER BY an Alias

SELECT <column_name_1> AS alias1, <column_name_2> AS alias2
FROM <table source>
ORDER BY alias1;

A query for the Sales.Orders table using column aliases would look like this:

ORDER BY Using Column Alias Example

SELECT orderid, custid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
ORDER BY orderyear;

 Note: See the previous topic for the syntax and usage of ASC or DESC to control sort order.

ORDER BY Clause Examples

The following are examples of common queries
using ORDER BY to sort the output for display. All
queries use the TSQL sample database.

A query against the Sales.Orders table, sorting the
results by the orderdate column:

ORDER BY Example 1

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate;

A query against the Sales.Orders table that sorts the output in descending order of orderdate (that is,
most recent to oldest):

ORDER BY Example 2

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-5

A query against the HR.Employees table that sorts employees in descending order of hire date (that is,
most recent to oldest), using lastname to differentiate employees hired on the same date:

ORDER BY Example 3

SELECT hiredate, firstname, lastname
FROM HR.Employees
ORDER BY hiredate DESC, lastname ASC;

Demonstration: Sorting Data

In this demonstration, you will see how to:

 Sort data using the ORDER BY clause.

Demonstration Steps
Sort Data Using The ORDER BY Clause

1. Ensure that the MSL-TMG1, 20761B-MIA-DC, and 20761B-MIA-SQL virtual machines are running, and
then log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Start SQL Server Management Studio and connect to your Azure instance of the AdventureWorksLT
database engine instance using SQL Server authentication.

3. Open the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

4. In Solution Explorer, expand Queries, and then double-click 11 - Demonstration A.sql.

5. In the Available Databases list, click ADVENTUREWORKSLT.

6. Select the code under the comment Step 1, and then click Execute.

7. Select the code under the comment Step 2, and then click Execute.

8. Select the code under the comment Step 3, and then click Execute.

9. Select the code under the comment Step 4, and then click Execute.

10. Select the code under the comment Step 5, and then click Execute.

11. Select the code under the comment Step 6, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Question: If you declare an alias for a column in the SELECT clause, you cannot use that alias
in the WHERE clause—but you can use it in the ORDER BY clause. Why is this?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-6 Sorting and Filtering Data

Lesson 2
Filtering Data with Predicates

When querying SQL Server, you will mostly want to retrieve only a subset of all rows stored in the table(s)
listed in the FROM clause. This is especially true as data volumes grow. To limit which rows are returned,
you will typically use the WHERE clause in the SELECT statement. In this lesson, you will learn how to
construct WHERE clauses to filter out rows that do not match the predicate.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the WHERE clause.

 Describe the syntax of the WHERE clause.

Filtering Data in the WHERE Clause with Predicates

To limit the rows that are returned by your query,
you will need to add a WHERE clause to your
SELECT statement, following the FROM clause.
WHERE clauses are constructed from a search
condition which, in turn, is written as a predicate
expression. The predicate provides a logical filter
through which each row must pass. Only rows
returning TRUE in the predicate will be output to
the next logical phase of the query.

When writing a WHERE clause, keep the following
considerations in mind:

 Your predicate must be expressed as a logical
condition, evaluating to TRUE or FALSE. (The evaluation may be NULL when working with missing
values or NULL. See Lesson 4 for more information.)

 Only rows for which the predicate evaluates as TRUE will be passed through the filter.

 Values of FALSE or UNKNOWN will be filtered out.

 Column aliases declared in the SELECT clause of the query cannot be used in the WHERE clause
predicate.

 Remember that, logically, the WHERE clause is the next phase in query execution after FROM, so the
WHERE clause will be processed before other clauses, such as SELECT. One consequence of this is that
the WHERE clause will be unable to refer to column aliases created in the SELECT clause. If you have
created expressions in the SELECT list, you will need to repeat the expressions for use in the WHERE
clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-7

For example, the following query, which uses a simple calculated expression in the SELECT list, will execute
successfully:

Filtering Example

SELECT orderid, custid, YEAR(orderdate) AS ordyear
FROM Sales.Orders
WHERE YEAR(orderdate) = 2006;

The following query will fail, due to the use of column aliases in the WHERE clause:

Incorrect Column Alias in WHERE Clause

SELECT orderid, custid, YEAR(orderdate) AS ordyear
FROM Sales.Orders
WHERE ordyear = 2006;

The error message points to the use of the column alias in Line 3 of the batch:

Msg 207, Level 16, State 1, Line 3
Invalid column name 'ordyear'.

From the perspective of query performance, the use of effective WHERE clauses can provide a significant
positive impact on SQL Server. Rather than return all rows to the client for post-processing, a WHERE
clause causes SQL Server to filter data on the server side. This can reduce network traffic and memory
usage on the client. SQL Server developers and administrators can also create indexes to support
commonly-used predicates, further improving performance.

WHERE Clause Syntax

In the SQL Server 2016 Technical Documentation,
the syntax of the WHERE clause appears as follows:

WHERE Clause Syntax

WHERE <search_condition>

The most common form of a WHERE clause is as
follows:

Typical WHERE Clause

WHERE <column> <operator> <expression>

For example, the following code fragment shows a WHERE clause that will filter only customers from
Spain:

WHERE Clause Example

SELECT contactname, country
FROM Sales.Customers
WHERE country = N'Spain';

Any of the logical operators introduced in the T-SQL language module earlier in this course may be used
in a WHERE clause predicate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-8 Sorting and Filtering Data

This example filters orders placed after a specified date:

WHERE Clause Example

SELECT orderid, orderdate
FROM Sales.Orders
WHERE orderdate > '20070101';

 Note: The representation of dates as strings delimited by quotation marks will be covered
in the next module.

In addition to using logical operators, literals, or constants in a WHERE clause, you may also use several T-
SQL options in your predicate:

Predicates and Operators Description

IN Determines whether a specified value matches any value in a subquery
or a list.

BETWEEN Specifies an inclusive range to test.

LIKE Determines whether a specific character string matches a specified
pattern.

AND Combines two Boolean expressions and returns TRUE only when both
are TRUE.

OR Combines two Boolean expressions and returns TRUE if either is TRUE.

NOT Reverses the result of a search condition.

 Note: The use of LIKE to match patterns in character-based data will be covered in the next
module.

The following example shows the use of the OR operator to combine conditions in a WHERE clause:

WHERE with OR Example

SELECT custid, companyname, country
FROM Sales.Customers
WHERE country = N'UK' OR country = N'Spain';

The following example modifies the previous query to use the IN operator for the same results:

WHERE with IN Example

SELECT custid, companyname, country
FROM Sales.Customers
WHERE country IN (N'UK',N'Spain');

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-9

The following example uses logical operators to search within a range of dates:

Range Example

SELECT orderid, custid, orderdate
FROM Sales.Orders
WHERE orderdate >= '20070101' AND orderdate <= '20080630';

The following example accomplishes the same results using the BETWEEN operator:

BETWEEN Operator

SELECT orderid, custid, orderdate
FROM Sales.Orders
WHERE orderdate BETWEEN '20070101' AND '20080630';

 Note: The use of comparison operators with date and time data types requires special
consideration. For more information, see Module 6.

Demonstration: Filtering Data with Predicates

In this demonstration, you will see how to:

 Filter data in a WHERE clause.

Demonstration Steps
Filter Data in a WHERE Clause

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. In the Available Databases list, click ADVENTUREWORKSLT.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute. Note the error message.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8, and then click Execute.

11. Select the code under the comment Step 9, and then click Execute.

12. Select the code under the comment Step 10, and then click Execute.

13. Select the code under the comment Step 11, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Question: You have a table named Employees that includes a column named StartDate. You
want to find who started in any year other than 2014. What query would you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-10 Sorting and Filtering Data

Lesson 3
Filtering Data with TOP and OFFSET-FETCH

In the previous lesson, you wrote queries that filtered rows, based on data stored within them. You can
also write queries that filter ranges of rows, based either on a specific number to retrieve, or one range of
rows at a time. In this lesson, you will learn how to use a TOP option to limit ranges of rows in the SELECT
clause. You will also learn how to limit ranges of rows using the OFFSET-FETCH option of an ORDER BY
clause.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the TOP option.

 Describe the OFFSET-FETCH clause.

 Describe the syntax of the OFFSET-FETCH clause.

Filtering in the SELECT Clause Using the TOP Option

When returning rows from a query, you may need
to limit the total number of rows returned, in
addition to filtering with a WHERE clause. The TOP
option, a Microsoft-proprietary extension of the
SELECT clause, will let you specify a number of
rows to return, either as an ordinal number or as a
percentage of all candidate rows.

The simplified syntax of the TOP option is as
follows:

TOP Option

SELECT TOP (N) <column_list>
FROM <table_source>
WHERE <search_condition>
ORDER BY <order list>;

For example, to retrieve only the five most recent orders from the Sales.Orders table, use the following
query:

TOP Example

SELECT TOP (5) orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

 Note: The TOP operator depends on an ORDER BY clause to provide meaningful
precedence to the rows selected. In the absence of ORDER BY, there is no guarantee for which
rows will be returned. In the previous example, any five orders might be returned if there wasn’t
an ORDER BY clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-11

In addition to specifying a fixed number of rows to be returned, the TOP keyword also accepts
the WITH TIES option, which will retrieve any rows with values that might be found in the
selected top N rows.

For example, the following query will return five rows with the most recent order dates:

Without the WITH TIES Option

SELECT TOP (5) orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

The results show five rows with two distinct orderdate values:

orderid custid orderdate
----------- ----------- -----------------------
11077 65 2008-05-06 00:00:00.000
11076 9 2008-05-06 00:00:00.000
11075 68 2008-05-06 00:00:00.000
11074 73 2008-05-06 00:00:00.000
11073 58 2008-05-05 00:00:00.000
(5 row(s) affected)

However, by adding the WITH TIES option to the TOP clause, you will see that more rows qualify for the
second-oldest order date:

With the WITH TIES Option

SELECT TOP (5) WITH TIES orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

This modified query returns the following results:

orderid custid orderdate
----------- ----------- -----------------------
11077 65 2008-05-06 00:00:00.000
11076 9 2008-05-06 00:00:00.000
11075 68 2008-05-06 00:00:00.000
11074 73 2008-05-06 00:00:00.000
11073 58 2008-05-05 00:00:00.000
11072 20 2008-05-05 00:00:00.000
11071 46 2008-05-05 00:00:00.000
11070 44 2008-05-05 00:00:00.000
 (8 row(s) affected)

The decision to include WITH TIES will depend on your knowledge of the source data, its potential for
unique values, and the requirements of the query you are writing.

To return a percentage of the row count, use the PERCENT option with TOP instead of a fixed number.

For example, if the Sales.Orders table contains 830 orders, the following query will return 83 rows:

Returning a Percentage of Records

SELECT TOP (10) PERCENT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

TOP (N) PERCENT may also be used with the WITH TIES option.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-12 Sorting and Filtering Data

 Note: For the purposes of row count, TOP (N) PERCENT will round up to the nearest
integer.

For additional information about the TOP clause, see the SQL Server 2016 Technical Documentation at:

TOP (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402719

Filtering in the ORDER BY Clause Using OFFSET-FETCH

While the TOP option is used by many SQL Server
professionals as a method for retrieving only a
certain range of rows, it also has disadvantages:

 TOP is proprietary to T-SQL and SQL Server.

 TOP does not support skipping a range of
rows.

 Because TOP depends on an ORDER BY
clause, you cannot use one sort order to
establish the rows filtered by TOP and another
to determine the output display.

To address a number of these concerns, Microsoft
added the OFFSET-FETCH extension to the ORDER BY clause.

Like TOP, OFFSET-FETCH enables you to return only a range of the rows selected by your query. However,
it adds the functionality to supply a starting point (an offset) and a value to specify how many rows you
would like to return (a fetch value). This provides a convenient technique for paging through results.

When paging, you will need to consider that each query with an OFFSET-FETCH clause runs
independently of any previous or subsequent query. There is no server-side state maintained, and you will
need to track your position through a result set via client-side code.

As you will see in the next topic, OFFSET-FETCH has been written to allow a more natural English
language syntax.

OFFSET-FETCH is supported in SQL Server 2012, 2014, and 2016.

For more information about the OFFSET-FETCH clause, see Using OFFSET and FETCH to limit the rows
returned in the SQL Server 2016 Technical Documentation at:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-13

OFFSET-FETCH Syntax

The syntax for the OFFSET-FETCH clause is as
follows:

OFFSET-FETCH Clause

OFFSET { integer_constant |
offset_row_count_expression } { ROW | ROWS
}
 [FETCH { FIRST | NEXT }
{integer_constant |
fetch_row_count_expression } { ROW | ROWS
} ONLY]

To use OFFSET-FETCH, you will supply a starting
OFFSET value (which may be zero) and an optional number of rows to return, as in the following example:

This example will skip the first 10 rows, and then return the next 10 rows, as determined by the order date:

OFFSET FETCH Example 1

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid DESC
OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY;

As you can see in the syntax definition, the OFFSET clause is required, but the FETCH clause is not. If the
FETCH clause is omitted, all rows following OFFSET will be returned. You will also find that the keywords
ROW and ROWS are interchangeable, as are FIRST and NEXT, which enables a more natural syntax.

To ensure the accuracy of the results, especially as you move from page to page of data, it is important to
construct an ORDER BY clause that will provide unique ordering and yield a deterministic result. Although
unlikely, due to SQL Server’s query optimizer, it is technically possible for a row to appear on more than
one page, unless the range of rows is deterministic.

 Note: To use OFFSET-FETCH for paging, you might supply the OFFSET value, in addition to
row count expressions, in the form of variables or parameters. You will learn more about variables
and stored procedure parameters in later modules of this course.

The following are some examples of using OFFSET-FETCH in T-SQL queries—all of them use the
AdventureWorks sample database:

To retrieve the 50 most recent rows as determined by the order date, this query starts with an offset of
zero. It will return a result similar to a SELECT TOP(50) query:

OFFSET-FETCH Example 2

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 0 ROWS FETCH FIRST 50 ROWS ONLY;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-14 Sorting and Filtering Data

This query will retrieve rows 51-100 of a result set:

OFFSET-FETCH Example 3

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 50 ROWS FETCH NEXT 50 ROWS ONLY;

 Note: Unlike those found in any previous modules, examples of OFFSET-FETCH must be
executed by SQL Server 2012 or later. OFFSET-FETCH is not supported in SQL Server 2008 R2 or
earlier.

Demonstration: Filtering Data with TOP and OFFSET-FETCH

In this demonstration, you will see how to:

 Filter data using TOP and OFFSET-FETCH.

Demonstration Steps
Filter Data Using TOP and OFFSET-FETCH

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8, and then click Execute.

11. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-15

Check Your Knowledge

Question

You have a table named Products in your Sales database. You are creating a paged display of
products in an application that shows 20 products on each page, ordered by name. Which of the
following queries would return the third page of products?

Select the correct answer.

 SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 60 ROWS FETCH NEXT 20 ROWS ONLY

 SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 40 ROWS FETCH NEXT 20 ROWS ONLY;

 SELECT TOP (20) ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

 SELECT TOP (20) WITH TIES ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-16 Sorting and Filtering Data

Lesson 4
Working with Unknown Values

Unlike traditional Boolean logic, predicate logic in SQL Server needs to account for missing values and
deal with cases where the result of a predicate is unknown. In this lesson, you will learn how three-valued
logic accounts for unknown and missing values; how SQL Server uses NULL to mark missing values; and
how to test for NULL in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe three-valued logic.

 Describe the use of NULL in queries.

Three-Valued Logic

Earlier in this course, you learned that SQL Server
uses predicate logic as a framework for logical
tests that return TRUE or FALSE. This is true for
logical expressions where all values being tested
are present. If you know the values of both X and
Y, you can safely determine whether X>Y is TRUE
or FALSE.

However, in SQL Server, not all data being
compared may be present. You need to plan for
and act on the possibility that some data is
missing or unknown. Values in SQL Server may be
missing but applicable, such as the value of a
middle initial that has not been supplied for an employee. It may also be missing but inapplicable, such as
the value of a middle initial for an employee who has no middle name. In both cases, SQL Server will mark
the missing value as NULL. A NULL is neither TRUE nor FALSE but is a mark for UNKNOWN, which
represents the third value in three-valued logic.

As discussed above, you can determine whether X>Y is TRUE or FALSE when you know the values of both
X and Y. But what does SQL Server return for the expression X>Y when Y is missing? SQL Server will return
an UNKNOWN, marked as NULL. You will need to account for the possible presence of NULL in your
predicate logic, and in the values stored in columns marked with NULL. You will need to write queries that
use three-valued logic to account for three possible outcomes—TRUE, FALSE, and UNKNOWN.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-17

Handling NULL in Queries

Once you have acquired a conceptual
understanding of three-valued logic and NULL,
you need to understand the different mechanisms
SQL Server uses for handling NULLs. Keep in mind
the following guidelines:

 Query filters, such as ON, WHERE, and the
HAVING clause, treat NULL like a FALSE result.
A WHERE clause that tests for a
<column_value> = N will not return rows
when the comparison is FALSE. Nor will it
return rows when either the column value or
the value of N is NULL.

Note the output of the following queries:

ORDER BY Query That Includes NULL in Results

SELECT empid, lastname, region
FROM HR.Employees
ORDER BY region ASC; --Ascending sort order explicitly included for clarity.

This returns the following, with all employees whose region is missing (marked as NULL) sorted first:

empid lastname region
----------- -------------------- ---------------
5 Buck NULL
6 Suurs NULL
7 King NULL
9 Dolgopyatova NULL
8 Cameron WA
1 Davis WA
2 Funk WA
3 Lew WA
4 Peled WA

 Note: A common question about controlling the display of NULL in queries is whether
NULLs can be forced to the end of a result set. As you can see, the ORDER BY clause sorts the
NULLs together and first—a behavior you cannot override.

 ORDER BY treats NULLs as if they were the same value and always sorts NULLs together, putting them
first in a column. Make sure you test the results of any queries in which the column being used for
sort order contains NULLs, and understand the impact of ascending and descending sorts on NULLs.

 In ANSI-compliant queries, a NULL is never equivalent to another value, even another NULL. Queries
written to test NULL with an equality will fail to return correct results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-18 Sorting and Filtering Data

Note the following example:

Incorrectly Testing for NULL

SELECT empid, lastname, region
FROM HR.Employees
WHERE region = NULL;

This returns unexpected results:

empid lastname region
----------- -------------------- ---------------
 (0 row(s) affected)

 Use the IS NULL (or IS NOT NULL) operator rather than equal (or not equal).

See the following example:

Correctly Testing for NULL

SELECT empid, lastname, region
FROM HR.Employees
WHERE region IS NULL;

This returns correct results:

empid lastname region
----------- -------------------- ---------------
5 Buck NULL
6 Suurs NULL
7 King NULL
9 Dolgopyatova NULL
 (4 row(s) affected)

Demonstration: Working with NULL

In this demonstration, you will see how to:

 Test for NULL.

Demonstration Steps
Test for Null

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Close SQL Server Management Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-19

Question: You have the following query:

SELECT e.Name, e.Age

FROM HumanResources.Employees AS e

WHERE YEAR(e.Age) < 1990;

Several employees have asked for their age to be removed from the Human Resources
database, and this requested action has been applied to the database.

Will the above query return these employees?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-20 Sorting and Filtering Data

Lab: Sorting and Filtering Data
Scenario
You are an Adventure Works business analyst who will be writing reports using corporate databases
stored in SQL Server. You have been provided with a set of data business requirements and will write T-
SQL queries to retrieve the specified data from the databases. You will need to retrieve only some of the
available data, and return it to your reports in a specified order.

Objectives
After completing this lab, you will be able to:

 Write queries that filter data using a WHERE clause.

 Write queries that sort data using an ORDER BY clause.

 Write queries that filter data using the TOP option.

 Write queries that filter data using an OFFSET-FETCH clause.

Estimated Time: 60 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Write Queries that Filter Data Using a WHERE Clause

Scenario
The marketing department is working on several campaigns for existing customers and staff need to
obtain different lists of customers, depending on several business rules. Based on these rules, you will
write the SELECT statements to retrieve the needed rows from the Sales.Customers table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement Using a WHERE Clause

3. Write a SELECT Statement Using an IN Predicate in the WHERE Clause

4. Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause

5. Observe the T-SQL Statement Provided by the IT Department

6. Write a SELECT Statement to Retrieve Customers Without Orders

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab05\Starter folder as Administrator.

 Task 2: Write a SELECT Statement Using a WHERE Clause
1. Open the project file D:\Labfiles\Lab05\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return the custid, companyname, contactname, address, city,
country, and phone columns from the Sales.Customers table. Filter the results to include only the
customers from the country Brazil.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-21

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

 Task 3: Write a SELECT Statement Using an IN Predicate in the WHERE Clause
1. Write a SELECT statement that will return the custid, companyname, contactname, address, city,

country, and phone columns from the Sales.Customers table. Filter the results to include only
customers from the countries Brazil, UK, and USA.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause
1. Write a SELECT statement that will return the custid, companyname, contactname, address, city,

country, and phone columns from the Sales.Customers table. Filter the results to include only the
customers with a contact name starting with the letter A.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\54 - Lab Exercise 1 - Task 3 Result.txt.

 Task 5: Observe the T-SQL Statement Provided by the IT Department
1. The IT department has written a T-SQL statement that retrieves the custid and companyname

columns from the Sales.Customers table and the orderid column from the Sales.Orders table:

SELECT
c.custid, c.companyname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid AND c.city = N'Paris';

2. Execute the query and notice two things: first, the query retrieves all the rows from the
Sales.Customers table. Second, there is a comparison operator in the ON clause, specifying that the
city column should be equal to the value ‘Paris’.

3. Copy the provided T-SQL statement and modify it to have a comparison operator for the city column
in the WHERE clause. Execute the query.

4. Compare the results that you achieved with the desired results shown in the files
D:\Labfiles\Lab05\Solution\55 - Lab Exercise 1 - Task 4a Result.txt and D:\Labfiles\Lab05\Solution\56 -
Lab Exercise 1 - Task 4b Result.txt.

5. Is the result the same as in the first T-SQL statement? Why? What is the difference between specifying
the predicate in the ON clause and in the WHERE clause?

 Task 6: Write a SELECT Statement to Retrieve Customers Without Orders
1. Write a T-SQL statement to retrieve customers from the Sales.Customers table that do not have

matching orders in the Sales.Orders table. Matching customers with orders is based on a comparison
between the customer’s and the order’s custid values. Retrieve the custid and companyname
columns from the Sales.Customers table. (Hint: Use a T-SQL statement similar to the one in the
previous task.)

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\57 - Lab Exercise 1 - Task 5 Result.txt.

Results: After this exercise, you should be able to filter rows of data from one or more tables by using
WHERE predicates with logical operators.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-22 Sorting and Filtering Data

Exercise 2: Write Queries that Sort Data Using an ORDER BY Clause

Scenario
The sales department would like a report showing all the orders with some customer information. An
additional request is that the result be sorted by the order dates and the customer IDs. From previous
modules, remember that the order of the rows in the output of a query without an ORDER BY clause is
not guaranteed. Because of this, you will have to write a SELECT statement that uses an ORDER BY clause.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement Using an ORDER BY Clause

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Order the Result by the firstname Column

 Task 1: Write a SELECT Statement Using an ORDER BY Clause
1. Open the T-SQL script 61 - Lab Exercise 2.sql, and ensure that you are connected to the TSQL

database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table and the orderid and orderdate columns from the Sales.Orders table. Filter
the results to include only orders placed on or after April 1, 2008 (filter the orderdate column), then
sort the result by orderdate in descending order and custid in ascending order.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Someone took your T-SQL statement from lab 4 and added the following WHERE clause:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
WHERE mgrlastname = 'Buck';

2. Execute the query exactly as written inside a query window and observe the result.

3. There is an error. What is the error message? Why do you think this happened? (Tip: Remember the
logical processing order of the query.)

4. Apply the needed changes to the SELECT statement so that it will run without an error. Test the
changes by executing the T-SQL statement.

5. Observe and compare the results that you achieved with the recommended results shown in the
D:\Labfiles\Lab05\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Order the Result by the firstname Column
1. Copy the existing T-SQL statement from task 2 and modify it so that the result will return all

employees and be ordered by the manager’s first name. First, try to use the source column name, and
then the alias column name.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\64 - Lab Exercise 2 - Task 3a and 3b Result.txt.

3. Why were you able to use a source column or alias column name?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-23

Results: After this exercise, you should know how to use an ORDER BY clause.

Exercise 3: Write Queries that Filter Data Using the TOP Option

Scenario
The sales department wants to have some additional reports that show the last invoiced orders and the
top 10 percent of the most expensive products being sold.

The main tasks for this exercise are as follows:

1. Writing Queries That Filter Data Using the TOP Clause

2. Use the OFFSET-FETCH Clause to Implement the Same Task

3. Write a SELECT Statement to Retrieve the Most Expensive Products

 Task 1: Writing Queries That Filter Data Using the TOP Clause
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Orders table, and retrieve the orderid and orderdate
columns. Retrieve the 20 most recent orders, ordered by orderdate.

3. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file 72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Use the OFFSET-FETCH Clause to Implement the Same Task
1. Write a SELECT statement to retrieve the same result as in task 1, but use the OFFSET-FETCH clause.

2. Execute the written statement and compare the results that you achieved with the results from task 1.

3. Compare the results that you achieved with the recommended result shown in the file 73 - Lab
Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve the Most Expensive Products
1. Write a SELECT statement to retrieve the productname and unitprice columns from the

Production.Products table.

2. Execute the T-SQL statement and notice the number of the rows returned.

3. Modify the SELECT statement to include only the top 10 percent of products based on unitprice
ordering.

4. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file 74 - Lab Exercise 3 - Task 3 Result.txt. Notice the number of rows returned.

5. Is it possible to implement this task with the OFFSET-FETCH clause?

Results: After this exercise, you should have an understanding of how to apply the TOP option in the
SELECT clause of a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-24 Sorting and Filtering Data

Exercise 4: Write Queries that Filter Data Using the OFFSET-FETCH Clause

Scenario
In this exercise, you will implement a paging solution for displaying rows from the Sales.Orders table
because the total number of rows is high. In each page of a report, the user should only see 20 rows.

The main tasks for this exercise are as follows:

1. OFFSET-FETCH Clause to Fetch the First 20 Rows

2. Use the OFFSET-FETCH Clause to Skip the First 20 Rows

3. Write a Generic Form of the OFFSET-FETCH Clause for Paging

 Task 1: OFFSET-FETCH Clause to Fetch the First 20 Rows
1. Open the T-SQL script 81 - Lab Exercise 4.sql, and ensure that you are connected to the TSQL

database.

2. Write a SELECT statement to retrieve the custid, orderid, and orderdate columns from the
Sales.Orders table. Order the rows by orderdate and ordered, and then retrieve the first 20 rows.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Use the OFFSET-FETCH Clause to Skip the First 20 Rows
1. Copy the SELECT statement in task 1 and modify the OFFSET-FETCH clause to skip the first 20 rows

and fetch the next 20.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Write a Generic Form of the OFFSET-FETCH Clause for Paging
 You are given the parameters @pagenum for the requested page number and @pagesize for the

requested page size. Can you work out how to write a generic form of the OFFSET-FETCH clause
using those parameters? (Don’t worry about not being familiar with those parameters yet.)

Results: After this exercise, you will be able to use OFFSET-FETCH to work page-by-page through a result
set returned by a SELECT statement.

Question: What is the difference between filtering using the TOP option, and filtering using
the WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-25

Module Review and Takeaways
In this module, you have learned how to enhance a query to limit the number of rows that the query
returns, and control the order in which the rows are displayed.

Review Question(s)
Question: Does the physical order of rows in a SQL Server table guarantee any sort order in
queries using the table?

Question: You have the following query:

SELECT p.PartNumber, p.ProductName, o.Quantity

FROM Sales.Products AS p

LEFT OUTER JOIN Sales.OrderItems AS o

ON p.ID = o.ProductID

ORDER BY o.Quantity ASC

You have one new product that has yet to receive any orders. Will this product appear at the
top or the bottom of the results?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-1

Module 6
Working with SQL Server 2016 Data Types

Contents:
Module Overview 6-1

Lesson 1: Introducing SQL Server 2016 Data Types 6-2

Lesson 2: Working with Character Data 6-11

Lesson 3: Working with Date and Time Data 6-20

Lab: Working with SQL Server 2016 Data Types 6-26

Module Review and Takeaways 6-32

Module Overview
To write effective queries in T-SQL, you should understand how SQL Server® 2016 stores different types
of data. This is especially important if your queries not only retrieve data from tables, but also perform
comparisons, manipulate data, and implement other operations.

In this module, you will learn about the data types SQL Server uses to store data. In the first lesson, you
will be introduced to many numeric and special-use data types. You will learn about conversions between
data types and the importance of data type precedence. You will learn how to work with character-based
data types, including functions that can be used to manipulate the data. You will also learn how to work
with temporal data, or data and time data, including functions to retrieve and manipulate all or portions
of a stored date.

Objectives
After completing this module, you will be able to:

 Describe SQL Server data types, type precedence, and type conversions.

 Write queries using numeric data types.

 Write queries using character data types.

 Write queries using date and time data types.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-2 Working with SQL Server 2016 Data Types

Lesson 1
Introducing SQL Server 2016 Data Types

In this lesson, you will explore many of the data types SQL Server uses to store data, and learn how data is
converted between data types.

 Note: Character, date, and time data types are excluded from this lesson but will be
covered later in the module.

If your focus in taking this course is to write queries for reports, you might wish to note which data types
are used in your environment. You can then plan your reports and client applications with sufficient
capacity to display the range of values held by the SQL Server data types. You may also need to plan for
data type conversions in your queries to display SQL Server data in other environments.

If your focus is to continue into database development and administration, you might wish to note the
similarities and differences within categories of data types, and plan your storage accordingly, as you
create types and design parameters for stored procedures.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how SQL Server uses data types.

 Describe the attributes of numeric data types, as well as binary strings and other specialized data
types.

 Describe data type precedence and its use in converting data between different data types.

 Describe the difference between implicit and explicit data type conversion.

SQL Server Data Types

SQL Server 2016 defines a set of system data types
for storing data in columns, holding values
temporarily in variables, operating on data in
expressions, and passing parameters to stored
procedures.

Data types specify the type, length, precision, and
scale of data. Understanding the basic types of
data in SQL Server is fundamental to writing
queries in T-SQL, along with designing tables and
creating other objects.

Developers might also extend the supplied set by
creating aliases to built-in types and even by
producing new user-defined types using the Microsoft® .NET Framework; however, this lesson will focus
on the built-in system data types.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-3

Other than character, date, and time types, which will be covered later in this module, SQL Server data
types can be grouped into the following categories:

 Exact numeric. These data types store data with precision, either as:

o Integers—whole numbers with varying degrees of capacity.

o Decimals—decimal numbers with control over both the total number of digits stored and the
number of digits to the right of the decimal place.

 Approximate numeric. These data types allow inexact values to be stored, typically for use in
scientific calculations.

 Binary strings. These data types allow binary data to be stored, such as byte streams or hashes, to
support custom applications.

 Other data types. This catch-all category includes several special types that fall outside the other
categories. Some of these data types can be used as column data types (and are therefore accessible
to queries). This category also includes data types not used for storage, but rather for special
operations, such as cursor manipulation or creating table variables for further processing. If you are a
report writer, you may only encounter the data types used for columns, such as the uniqueidentifier
and xml data types.

As you learn about these types, take note of the relationship between capacity and storage requirements.

Numeric Data Types

 Numeric data types fall into one of two
subcategories—exact numeric and
approximate numeric.

 Exact numeric data types:

o Integer data types. The distinction
between the integer data types (tinyint,
smallint, int, bigint) relates to their
capacity and storage requirements. The
tinyint data type, for example, holds
values from 0 to 255 with a storage cost
of 1 byte. By contrast, the bigint data
type holds values from -263 (-
9,223,372,036,854,775,808) to 263-1 (9,223,372,036,854,775,807) with a storage cost of 8 bytes.

o Decimal data types. These data types are specified with the total number of digits to be stored
(precision) and the number of digits to the right of the decimal place (scale). The larger the
precision, the greater the storage cost. Note that there is no functional difference between the
decimal data type and numeric data type—decimal is the ISO standards-compliant name for
the data type; numeric is used for backward compatibility with earlier versions of SQL Server.

o Money data types, for storing monetary or currency values with a scale of up to four decimal
places. As with the integer types, the distinction between the money data types money and
smallmoney relates to their capacity and storage requirements. The smallmoney data type
holds values from -214,748.3648 to 214,748.3647 with a storage cost of 4 bytes. The money data
type holds values from -922,337,203,685,477.5808 to 922,337,203,685,477.5807 with a storage
cost of 8 bytes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-4 Working with SQL Server 2016 Data Types

o Boolean data type. The bit data type is used to store Boolean values (true/false) which are treated
by SQL Server as numeric values—1 for true and 0 for false.

For more information, see the following topics in the SQL Server 2016 Technical Documentation:

Data Types (Transact-SQL) at:

Data Types (Transact-SQL)

http://aka.ms/we8bzv

Precision, Scale, and Length (Transact-SQL)

Precision, Scale, and Length (Transact-SQL)

http://aka.ms/t0hwx5

decimal and numeric (Transact-SQL)

decimal and numeric (Transact-SQL)

http://aka.ms/sqkh78

 Approximate numeric data types. The approximate numeric data types are less accurate, but have
more capacity than the exact numeric data types. The approximate numeric data types store values in
scientific notation which, because of a lack of precision, loses accuracy.

o The float data type takes an optional parameter of the number of bits used to store the mantissa
of the float number in scientific notation. The size of the mantissa value determines the storage
size of the float. If the mantissa is in the range 1 to 24, the float requires 4 bytes. If the mantissa is
between 25 and 53, it requires 8 bytes.

o The real data type is a synonym for a float data type with a mantissa value of 24 (that is,
float(24))

 Note: Note that, in this context, the term mantissa is used to mean the significant digits of
the floating point number. In mathematics, this portion of the number is more commonly
referred to as the significand; however, in computer science, it is commonly referred to as the
mantissa.

See the topic float and real (Transact-SQL) in the SQL Server 2016 Technical Documentation:

float and real (Transact-SQL)

http://aka.ms/noqiea

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-5

Binary String Data Types

Binary string data types allow a developer to store
binary information, such as serialized files, images,
byte streams, and other specialized data. If you are
considering using the binary data type, note the
differences in range and storage requirements,
compared with numeric and character string data.
You can choose between fixed-width and variable-
width binary strings; the differences between these
will be explained in the character data type lesson
later in the module.

The following example shows an integer value
being converted to a binary data type:

Converting to Binary Data Type

SELECT CAST(12345 AS binary(4)) AS Result;

Returns the following:

Result

0x00003039

The two leading characters in the output (0x) indicate that the output is a binary string.

For more information, see the binary and varbinary (Transact-SQL) topic in the SQL Server Technical
Documentation:

binary and varbinary (Transact-SQL)

http://aka.ms/o0ap4l

 Note: The image data type is also a binary string type but is marked for removal in a future
version of SQL Server. varbinary(max) should be used instead.

Other Data Types

In addition to numeric and binary types, SQL Server also
supplies some other data types for specialized use cases,
such as storage and processing of XML, generation and
storage of globally unique identifiers (GUIDs), the
representation of hierarchies, and more:

 The xml data type allows the storage and
manipulation of Extensible Markup Language data
(XML). The advantage of the xml data type over
storing XML in a character data type is that the xml
data type allows XML nodes and attributes to be
queried within a T-SQL query using XQuery
expressions. The xml data type also optionally allows an XML schema to be enforced. Each instance
of an xml data type can store up to 2 GB of data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-6 Working with SQL Server 2016 Data Types

 Additional Reading: See course 20472-2: Developing Microsoft SQL Server Databases for
additional information on the XML data type.

 The uniqueidentifier data type allows the generation and storage of globally unique identifiers
(GUIDs), stored as a 16-byte value. Values for the uniqueidentifier data type can be generated within
SQL Server by using the NEWID() system function; they can also be generated by external applications
or converted from string values.

The following example demonstrates the various methods that can be used to generate a GUID:

Creating GUIDs for the uniqueidentifier Data Type

SELECT NEWID() AS GUID_from_NEWID, CAST('1C0E3B5C-EA7A-41DC-8E1C-D0A302B5E58B' AS
uniqueidentifier) AS GUID_cast_from_string;

Returns:

GUID_from_NEWID GUID_cast_from_string
------------------------------------ ------------------------------------
DB71DBAE-460B-41DD-8CF1-FBEE3000BE0D 1C0E3B5C-EA7A-41DC-8E1C-D0A302B5E58B

 The hierarchyid data type is used to simplify the recording and querying of hierarchical relationships
between rows in the same table—for example, the levels in an organizational chart or a bill of
materials. SQL Server stores hierarchyid as a variable-length binary data type; the hierarchy is
exposed through built-in functions.

 Additional Reading: See course 20472-2: Developing Microsoft SQL Server Databases for
additional information on the hierarchyid data type.

 The rowversion data type stores an automatically generated 8-byte binary value in a table that
increments each time a row is inserted or updated. Rowversion values do not store date or time
information, but can be used to detect whether a row has been changed since it was last read by a
client application (for instance, when implementing optimistic locking).

 The spatial data types are special complex data types for dealing with geometric and geographic
data. A detailed discussion of these types is beyond the scope of this course:

o The geometry data type is used to store data in a Euclidean (flat) coordinate system. Arrays of
coordinates defining lines, polygons and other simple geometric shapes can be stored in the
geometry data type. Special built-in methods are available for carrying out operations on
geometry data.

o The geography data type is used to store data in a round-earth coordinate system, such as GPS
latitude and longitude coordinated. As with the geography data type, shape definitions can be
stored in the geography type, then built-in methods used to operate on geography data.

 The sql_variant type is a special type that may be used to store data of any other built-in data type—
for instance, enabling integer, decimal and character data to be stored in the same column. Use of
the sql_variant data type is not a best practice for typical database designs, and its use may indicate
design problems. The sql_variant data type is listed here for completeness.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-7

The following data types may not be used as data types for columns in tables or views; they are used as
variables or parameters for stored procedures:

 The cursor data type is used to reference a cursor object, which allows row-by-row processing of a
data set. A discussion of cursors is beyond the scope of this module.

 The table data type is used to define a table variable or stored procedure parameter, which has many
of the properties of a standard database table but exists only in the context of the session for which it
was created. Table data types are typically used to temporarily store the results of T-SQL statements
for further processing later. You will learn about uses for the table data type later in this course.

For information on all of SQL Server’s data types, see the SQL Server 2016 Technical Documentation,
starting from:

Data Types (Transact-SQL)

http://aka.ms/we8bzv

Data Type Precedence

When combining or comparing different data
types in your queries, such as in a WHERE or JOIN
clause, SQL Server will need to convert one value
from its data type to that of the other value.
Which data type is converted depends on the
precedence between the two.

SQL Server defines a ranking of all its data types
by precedence—between any two data types, one
will have a lower precedence and the other a
higher precedence. When converting, SQL Server
will attempt to convert the lower data type to the
higher one. Typically, this will happen implicitly,
without the need for special code. However, it is important for you to have a basic understanding of this
precedence arrangement so you know when you need to manually, or explicitly, convert data types to
combine or convert them.

For example, here is a partial list of data types, ranked according to their precedence:

1. xml

2. datetime2

3. date

4. time

5. decimal

6. int

7. tinyint

8. nvarchar

9. char

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-8 Working with SQL Server 2016 Data Types

When combining or comparing two expressions with different data types, the one lower on this list will be
converted to the type that is higher. In this example, the variable of data type tinyint will be implicitly
converted to int before being added to the int variable @myInt:

DECLARE @myTinyInt AS TINYINT = 25;
DECLARE @myInt as INT = 9999;
SELECT @myTinyInt + @myInt;

 Note: Any implicit conversion is transparent to the user; therefore, if it fails (such as when
your operation requires converting between data types for which no implicit conversion exists),
you will need to explicitly convert the data type.
You will learn how to use the CAST and CONVERT functions for this purpose in the next module.
There are some combinations of data types for which no conversion, explicit or implicit, is
possible.

For more information and a complete list of data types and a list of precedence, see the SQL Server 2016
Technical Documentation:

Data Type Precedence (Transact-SQL)

http://aka.ms/a8ihqi

For complete information on pairs of data types requiring implicit or explicit conversion, or for which no
conversion is available, see the chart in the Implicit Conversions section of CAST and CONVERT (Transact-
SQL):

CAST and CONVERT (Transact-SQL) - Implicit Conversions

http://aka.ms/asaqq3

When are Data Types Converted?

When querying SQL Server, there are a number of
scenarios in which data might be converted between
data types:

 When data is moved, compared to, or combined with
other data.

 During variable assignment.

 When using any operator that involves operands of
different types.

 When T-SQL code explicitly converts one data type to another, using the CAST or CONVERT function.

In the example in the previous topic, a variable of the tinyint data type was implicitly converted to an int
data type when tinyint and int data types were added together in a query:

Implicit Conversion Example - Integer Data Types

DECLARE @myTinyInt AS tinyint = 25;
DECLARE @myInt as int = 9999;
SELECT @myTinyInt + @myInt;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-9

You might also anticipate that an implicit conversion will take place in the following example:

Implicit Conversion Example - Integer and Character Data Types

DECLARE @myChar AS char(5) = '6';
DECLARE @myInt AS int = 1;
SELECT @myChar + @myInt;

Question: In the example, which data type will be converted? To which data type will it be converted?

As you have learned, SQL Server will automatically attempt to perform an implicit conversion from a
lower-precedence data type to a higher-precedence data type.

Implicit data type conversion is transparent to the user, unless the conversion fails. See the following
example:

Failing Implicit Conversion Example

DECLARE @myChar AS char(5) = 'six';
DECLARE @myInt AS int = 1;
SELECT @myChar + @myInt;

Returns:

Msg 245, Level 16, State 1, Line 3
Conversion failed when converting the varchar value 'six' to data type int.

Question: Why does SQL Server attempt to convert the character variable to an integer and not the other
way around?

To force SQL Server to convert the int data type to a character data type for the purposes of this query,
you need to explicitly convert it. You will learn how to do this in the next module.

To learn more about data type conversions, see the SQL Server 2016 Technical Documentation at:

Data Type Conversion (Database Engine)

http://aka.ms/t5db1i

Demonstration: SQL Server Data Types

In this demonstration, you will see how to:

 Convert data types.

Demonstration Steps
Convert Data Types

1. Ensure that the 20761B-MIA-DC, and 20761B-MIA-SQL virtual machines are running, and then log on
to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Start SQL Server Management Studio and connect to your Azure instance of the AdventureWorksLT
database engine instance using SQL Server authentication.

3. Open the Demo.ssmssln solution in the D:\Demofiles\Mod06\Demo folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-10 Working with SQL Server 2016 Data Types

4. In Solution Explorer, expand Queries, and then double-click 11 - Demonstration A.sql.

5. In the Available Databases list, click AdventureWorksLT.

6. Select the code under the comment Step 2, and then click Execute.

7. Select the code under the comment Step 3, and then click Execute. Note the error message.

8. Select the code under the comment Step 4, and then click Execute.

9. Keep SQL Server Management Studio open for the next demonstration.

Categorize Activity
Place each item into the appropriate category. Indicate your answer by writing the category number to
the right of each item.

Items

1 tinyint

2 float

3 binary

4 int

5 real

6 varbinary

7 bigint

8 decimal

9 money

10 bit

Category 1 Category 2 Category 3

Exact Numeric Data Types Approximate Numeric Data
Types

 Binary Data Types

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-11

Lesson 2
Working with Character Data

It is likely that the data you will work with in your T-SQL queries will include character data. As you will
learn in this lesson, character data involves not only choices of capacity and storage, but also text-specific
issues such as language, sort order, and collation. In this lesson, you will learn about the SQL Server
character-based data types, how character comparisons work, and some common functions you might
find useful in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the character data types supplied by SQL Server.

 Describe the impact of collation on character data.

 Concatenate strings.

 Extract and manipulate character data using built-in functions.

 Write queries using the LIKE predicate for matching patterns in character data.

Character Data Types

Even though SQL Server has many numeric data
types, working with numeric data is relatively
straightforward because numeric data follows a
clearly defined set of mathematical rules.

By comparison, although there are fewer character
data types available, working with character data
in SQL Server can be more complicated. This is
because you need to consider multiple languages,
character sets, accented characters, sort rules and
case sensitivity, and capacity and storage. Each of
these factors might have an impact on which
character data types you encounter when writing
queries.

Character data types in SQL Server are categorized by two characteristics:

 Support for either fixed-width or variable-width data:

o Fixed-width data is always stored at a consistent size, regardless of the number of characters in
the character data. Any unused space is filled with padding.

o Variable-width data is stored at the size of the character data, plus a small overhead.

 Support for either a single-byte character set or a multi-byte character set:

o A single-byte character set supports up to 256 different characters, stored as one byte per
character. By default, SQL Server uses the ASCII character set to interpret this data.

o A multi-byte character set supports more than 65,000 different characters by storing each
character as multiple bytes—typically two bytes per character, but sometimes more. SQL Server
uses the UNICODE UCS-2 character set to interpret this data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-12 Working with SQL Server 2016 Data Types

The four available character data types support all possible combinations of these characteristics:

Data Type Fixed Width? Variable Width? Single-Byte Characters? Multi-Byte
Characters?

char Yes Yes

nchar Yes Yes

varchar Yes Yes

nvarchar Yes Yes

Definitions for columns or variables take an optional value that defines the maximum length of the
character data to be stored. You will almost always need to specify a value for the string length; if the
maximum length value is not supplied, the default value is one character.

The varchar and nvarchar data types support the storage of very long strings of character data by using
max for this value. Use of varchar(max) and nvarchar(max) replaces the use of the deprecated text and
ntext types.

Data Type Range Storage

char(n)
nchar(n)

1-8000 characters
1-4000 characters

n bytes, padded
2*n bytes, padded

varchar(n)
nvarchar(n)

1-8000 characters
1-4000 characters

Actual length + 2
bytes

varchar(max)
nvarchar(max)

Up to 2 GB Actual length + 2
bytes

 Note: All character data is delimited with single quotation marks.

 Single-byte character data is indicated with single quotation marks alone—for example 'SQL Server'.

 Multi-byte character data is indicated by single quotation marks with the prefix N (for National)— for
example N'SQL Server’. The N prefix is always required, even when inserting the data into a column
or variable with a multi-byte type.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-13

Collation

In addition to character byte count and length,
SQL Server character data types are assigned a
collation.

A collation is a collection of properties that
determine several aspects of character data,
including:

 Language or locale, from which is derived:

o Character set

o Sort order

 Case sensitivity

 Accent sensitivity

 Note: A default collation is configured during the installation of SQL Server, but can be
overridden on a per-database or per-column basis. As you will see, you might also override the
current collation for some character data by explicitly setting a different collation in your query.

When querying, it is important to be aware of the collation settings for your character data—for example,
whether it is case-sensitive.

The following query will return different results, depending on whether the column being tested in the
WHERE clause is case-sensitive or not:

If the column is case-sensitive, this query will return results. Note that the case of the search term matches
the case of the data as stored in the database:

Case-Sensitivity Example (1)

SELECT empid, lastname
FROM HR.employees
WHERE lastname = N’Funk’;

Amending the search term, so that the case no longer matches the data as stored in the database, would
result in no rows being returned:

Case-Sensitivity Example (2)

SELECT empid, lastname
FROM HR.employees
WHERE lastname = N’funk’;

The COLLATE clause can be used to override the collation of a column and force a different collation to
be applied when the query is run.

This example forces a case-sensitive and accent-sensitive comparison using the Latin1_General sort rules
and character table by adding a COLLATE clause to the WHERE clause:

Using COLLATE in the WHERE Clause

SELECT empid, lastname
FROM HR.employees
WHERE lastname COLLATE Latin1_General_CS_AS = N’Funk’;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-14 Working with SQL Server 2016 Data Types

 Note: Note that database-level collation settings apply to database object names (such as
tables and views) as well as to character data.
For example, in a database with a case-sensitive default collation, the table names
“HR.Employees” and “HR.employees” would refer to two different objects. In a database with a
case-insensitive collation, the table names “HR.Employees” and “HR.employees” would refer to
the same object.

For more information on this topic, see the SQL Server 2016 Technical Documentation:

COLLATE (Transact-SQL)

http://aka.ms/ty97q8

Collation and Unicode Support

http://aka.ms/pm56d9

String Concatenation

There are multiple ways to concatenate, or join together,
multiple character data, or string, values in SQL Server.

The CONCAT function takes at least two (or more) data
values as arguments and returns a string value with the
input values concatenated together.

If any of the input data values is not of a character data
type, it will be implicitly converted to a character data
type.

Any NULL values will be converted to an empty string.

Syntax for the CONCAT function:

CONCAT Function Syntax

CONCAT (string_value1, string_value2 [, string_valueN])

An example of the use of the CONCAT function:

Concatenating Strings Using CONCAT

SELECT custid, city, region, country,
CONCAT(city, ', ' + region, ', ' + country) AS location
FROM Sales.Customers;

Part of the result returned by this query is shown below:

custid city region country location
------ ----------- ------ -------- -------------------
1 Berlin NULL Germany Berlin, Germany
2 México D.F. NULL Mexico México D.F., Mexico
3 México D.F. NULL Mexico México D.F., Mexico
4 London NULL UK London, UK
5 Luleå NULL Sweden Luleå, Sweden

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-15

See the topic CONCAT (Transact-SQL) in the SQL Server 2016 Technical Documentation:

CONCAT (Transact-SQL)

http://aka.ms/b9c34t

The CONCAT function was introduced in SQL Server 2012.

In earlier versions of SQL Server than 2012, the CONCAT function is not available; string concatenation is
carried out using the + (plus) operator.

If any of the string values concatenated with the + operator is NULL, the output string will be NULL.

No conversion of data types is carried out (see note below).

The following example shows the use of the + operator to concatenate a given name, space, and family
name into a single string:

Concatenating Strings Using +

SELECT
empid, lastname, firstname, firstname + N' ' + lastname AS fullname
FROM HR.Employees;

 Note: Since the plus sign is also used for arithmetic addition, consider whether any of your
data is of a numeric data type when concatenating. Character data types have a lower
precedence than numeric data type, and SQL Server will attempt to convert and add mixed data
types rather than concatenating them.

Character String Functions

In addition to retrieving character data as is from
SQL Server, you may also need to extract portions
of text or determine the location of characters
within a larger string. SQL Server provides a
number of built-in functions to accomplish these
tasks. Some of these functions include:

 FORMAT—allows you to format an input
value to a character string based on a .NET
format string, with an optional culture
parameter.

This example shows the use of the FORMAT
function to format a money value as currency in
various locales:

FORMAT Function

DECLARE @m money = 120.595

SELECT @m AS unformatted_value,
FORMAT(@m,'C','zh-cn') AS zh_cn_currency,
FORMAT(@m,'C','en-us') AS en_us_currency,
FORMAT(@m,'C','de-de') AS de_de_currency;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-16 Working with SQL Server 2016 Data Types

Returns:

unformatted_value zh_cn_currency en_us_currency de_de_currency
----------------- -------------- -------------- --------------
120.595 ¥120.60 $120.60 120,60 €

 SUBSTRING—allows you to return part of a character string given a starting point and a number of
characters to return.

This example shows the use of SUBSTRING to return a portion of a string:

SUBSTRING Example

SELECT SUBSTRING('Microsoft SQL Server ',11,3) AS Result;

Returns:

Result

SQL

 LEFT and RIGHT—allows you to return a number of characters from the left or right of a string.

This example shows the use of LEFT and RIGHT to select portions of a string:

LEFT and RIGHT Example

SELECT LEFT('Microsoft SQL Server',9) AS left_example,
RIGHT('Microsoft SQL Server',6) AS right_example;

Returns:

left_example right_example
------------ -------------
Microsoft Server

 LEN and DATALENGTH—allows you to query metadata about the number of characters or the
number of bytes stored in a string.

This example shows the result returned from LEN and DATALENGTH for the same padded string:

LEN and DATALENGTH Example

SELECT LEN('Microsoft SQL Server ') AS [LEN];
SELECT DATALENGTH('Microsoft SQL Server ') AS [DATALENGTH];

Returns:

LEN

20
DATALEN

25

 CHARINDEX—allows you to query the start position of a string within another string. If the target
string is not found, CHARINDEX returns 0.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-17

This example shows output of CHARINDEX when the searched-for string is found:

CHARINDEX Example

SELECT CHARINDEX('SQL','Microsoft SQL Server') AS Result;

Returns:

Result

11

 REPLACE—allows you to substitute one string for another within a target string.

This example shows the output of REPLACE when the searched-for string is found:

REPLACE Example

SELECT REPLACE('Learning about T-SQL string functions','T-SQL','Transact-SQL') AS Result;

Returns:

Result

Learning about Transact-SQL string functions

 UPPER and LOWER—for performing character case conversions.

This example shows the use of UPPER and LOWER to manipulate the case of strings:

UPPER and LOWER Example

SELECT UPPER('Microsoft SQL Server') AS [UP],LOWER('Microsoft SQL Server') AS [LOW];

Returns:

UP LOW
-------------------- --------------------
MICROSOFT SQL SERVER microsoft sql server

For references on these and other string functions, see the SQL Server 2016 Technical Documentation:

String Functions (Transact-SQL)

http://aka.ms/lt6hg9

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-18 Working with SQL Server 2016 Data Types

The LIKE Predicate

Character-based data in SQL Server provides for
more than exact matches in your queries. Through
the use of the LIKE predicate, you can also
perform pattern matching in your WHERE clause.

The LIKE predicate allows you to check a character
string against a pattern. Patterns are expressed
with symbols, which can be used alone or in
combinations to search within your strings:

 % (Percent) represents a string of any length.
For example, LIKE N'Sand%' will match 'Sand',
'Sandwich', 'Sandwiches', and so on.

 _ (Underscore) represents a single character. For example, LIKE N'_a%' will match any string whose
second character is an 'a'.

 [<List of characters>] represents a single character within the supplied list. For example, LIKE
N'[DEF]%' will find any string that starts with a 'D', an 'E', or an 'F'.

 [<Character> - <character>] represents a single character within the specified range. For example,
LIKE N'[N-Z]%' will match any string that starts with a letter of the alphabet between N and Z,
inclusive.

 [^<Character list or range>] represents a single character not in the specified list or range. For
example, LIKE N'^[A]% ' will match a string beginning with any other character than an 'A'.

 ESCAPE is used to set an escape character, meaning you can search for a character that is a wildcard
character but to treat it as a literal, rather than a wildcard. Each instance of the special character to be
treated as a literal must be preceded by the specified escape character. For example, LIKE N'10!%
off%' ESCAPE '!' will match any string that starts with ‘10% off’, but would not match the string ‘100
special offers’ (which would be matched if the ESCAPE character was not used).

For further information on LIKE, see the SQL Server 2016 Technical Documentation:

LIKE (Transact-SQL)

http://aka.ms/rm8ihw

Demonstration: Working with Character Data

In this demonstration, you will see how to:

 Manipulate character data.

Demonstration Steps
Manipulate Character Data

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. In the Available Databases list, click AdventureWorksLT.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3a, and then click Execute.

5. Select the code under the comment Step 3b, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-19

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select all the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT FirstName

FROM HumanResources.Employees

WHERE FirstName LIKE N'[^MA]%'

Will the query return an employee with the first name ‘Matthew’?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-20 Working with SQL Server 2016 Data Types

Lesson 3
Working with Date and Time Data

Date and time data is very common when you are working with SQL Server data types. In this lesson, you
will learn which data types are used to store date and time data; how to enter dates and times so they will
be properly parsed by SQL Server; and how to manipulate dates and times with built-in functions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the data types used to store date and time information.

 Enter dates and times as literal values for SQL Server to convert to date and time types.

 Write queries comparing dates and times.

 Write queries using built-in functions to manipulate dates and extract date parts.

Date and Time Data Types

There has been a progression in SQL Server's
handling of temporal data as newer versions are
released. As you may need to work with data
created for older versions of SQL Server, even
though you're writing queries for SQL Server 2016,
it will be useful to review past support for date
and time data:

 Before SQL Server 2008, there were only two
data types for date and time data: datetime
and smalldatetime. Each of these stored both
the date and the time in a single value. For
example, a datetime could store '20140212
08:30:00' to represent February 12, 2014 at 08:30.

 In SQL Server 2008, Microsoft introduced four new data types: datetime2, date, time, and
datetimeoffset. These addressed issues of precision, capacity, time zone tracking, and separating
dates from times. For new work, Microsoft recommends these types over the older datetime and
smalldatetime.

 In SQL Server 2012, Microsoft introduced new functions for working with partial data from date and
time data types (such as DATEFROMPARTS) and for performing calculations on dates (such as
EOMONTH).

For more information on all the date and time data types, see the SQL Server 2016 Technical
Documentation:

Date and Time Types

http://aka.ms/aekgy8

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-21

Entering Date and Time Data Types Using Strings

To use date and time data in your queries, you will need to
be able to represent date and time data in T-SQL. SQL Server
doesn't offer the means to enter dates and times as literal
values, so you will use character strings (often referred to as
string literals) which are delimited, like all other strings in SQL
Server, with single quotes. SQL Server will implicitly convert
the string literals to date and time values. (You might also
explicitly convert string literals with the T-SQL CAST and
CONVERT functions, which you will learn about in the next
module.)

SQL Server can interpret a wide variety of string literal formats as dates but, for consistency and to avoid
issues with language or nationality interpretation, it is recommended that you use a neutral format, such
as 'YYYYMMDD'. To represent February 12, 2014, you would use the literal '20140212'.

This example shows the use of a string literal to extract orders with an order date of August 25, 2007:

String Literals Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate = '20070825';

Various other language-neutral formats for date and time literals are available to you:

Data Type Language-Neutral Formats Examples

datetime 'YYYYMMDD hh:mm:ss.nnn'
'YYYY-MM-DDThh:mm:ss.nnn'
'YYYYMMDD'

'20140212 12:30:15.123'
'2014-02-12T12:30:15.123'
'20140212'

smalldatetime 'YYYYMMDD hh:mm'
'YYYY-MM-DDThh:mm'
'YYYYMMDD'

'20140212 12:30'
'2014-02-12T12:30'
'20140212'

datetime2 'YYYY-MM-DD'
'YYYYMMDD hh:mm:ss.nnnnnnn'
'YYYY-MM-DD hh:mm:ss.nnnnnnn'
'YYYY-MM-DDThh:mm:ss.nnnnnnn'
'YYYYMMDD'
'YYYY-MM-DD'

'2014-02-12'
'20140212 12:30:15.1234567'
'2014-02-12 12:30:15.1234567'
'2014-02-12T12:30:15.1234567'
'20140212'
'2014-02-12'

date 'YYYYMMDD'
'YYYY-MM-DD'

'20140212'
'2014-02-12'

time 'hh:mm:ss.nnnnnnn' '12:30:15.1234567'

datetimeoffset 'YYYYMMDD hh:mm:ss.nnnnnnn
[+|-]hh:mm'
'YYYY-MM-DD hh:mm:ss.nnnnnnn
[+|-]hh:mm'
'YYYYMMDD'
'YYYY-MM-DD'

'20140212 12:30:15.1234567
+02:00'
'2014-02-12 12:30:15.1234567
+02:00'
'20140212'
'2014-02-12'

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-22 Working with SQL Server 2016 Data Types

Working Separately with Date and Time

As you have learned, some SQL Server temporal
data types store both date and time together in
one value. datetime and datetime2 combine
year, month, day, hour, minute, seconds, and
more. The datetimeoffset data type also adds
time zone information to the date and time. The
time and date components are optional in
combination data types such as datetime2. So,
when using these data types, you should be aware
of how they behave when provided with only
partial data:

 If only the date is provided, the time portion
of the data type is filled with zeros and the time is considered to be set at midnight.

The following example demonstrates the behavior of datetime2 when only date information is provided:

datetime2 with No Time

DECLARE @DateOnly AS datetime2 = '20160112';
SELECT @DateOnly AS Result;

Returns:

Result

2016-01-12 00:00:00.0000000

 If a data type that holds both date and time—such as datetime or datetime2—data is populated
only with time data, the date portion of the value will be set to a default value of January 1, 1900. If
you need to store time data alone, use the time data type.

The following example shows the default date being used when time-only data is converted to the
datetime2 data type:

Default Date Example

DECLARE @time AS time = '12:34:56';
SELECT CAST(@time AS datetime2) AS Result;

Returns:

Result

1900-01-01 12:34:56.0000000

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-23

Querying Date and Time Values

When querying date and time data types, you might need to
consider both the date and time portions of the data to
return the results you expect.

In this example, a user is trying to query all the sales orders
with an order date of August 25, 2007:

Midnight Time Values Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate= '20070825';

This query might satisfy the user’s requirement—note that only sales orders with an order date of
midnight on August 25, 2007 are returned:

orderid custid empid orderdate
----------- ----------- ----------- -----------------------
10643 1 6 2007-08-25 00:00:00.000
10644 88 3 2007-08-25 00:00:00.000

This is because SQL Server implicitly converts the string literal '20070825' used in the query to the same
data type as the Sales.Orders.orderdate column—datetime—and in doing so applies the default value of
midnight for the time portion of the value.

This means that the query is interpreted as:

Midnight Time Values Example (2)

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate= '20070825 00:00:00.000';

This means that only values that exactly match midnight are returned. If there are rows in the table with
an order date of August 25, 2007 but with a time after midnight, they would not be returned by this
query.

One way to be certain of returning all the orders for August 25, 2007—regardless of the time portion of
the orderdate column—would be to query the data with a range, rather than a single value:

Querying a Date Range Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate >= '20070825'
AND orderdate < '20070826';

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-24 Working with SQL Server 2016 Data Types

Date and Time Functions

SQL Server provides a number of functions
designed to manipulate date and time data:

 Functions that return current date and time,
offering you choices between various return
types, in addition to whether to include or
exclude time zone information.

 Functions that return parts of date and time
values, enabling you to extract only the
portion of a date or time that your query
requires. Note that DATENAME and
DATEPART offer functionality similar to one
another. The difference between them is the
return type.

 Functions that return date and time typed data from components such as separately supplied year,
month, and day. This offers an alternative to providing dates as string literals, as already covered in
this lesson. Note that these functions require all parts of the target date/time data to be provided.

 Functions that modify date and time values, including to increment dates, to calculate the last day of
a month, and to alter time zone offset information.

 Functions that examine date and time values, returning metadata or calculations about intervals
between input dates.

For details of all date and time functions, see the SQL Server 2016 Technical Documentation at:

Date and Time Data Types and Functions (Transact-SQL)

http://aka.ms/ifob87

Demonstration: Working with Date and Time Data

In this demonstration, you will see how to:

 Query date and time values.

Demonstration Steps
Query Data and Time Values

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. In the Available Databases list, click AdventureWorksLT.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-25

Categorize Activity
Place each item into the appropriate category. Indicate your answer by writing the category number to
the right of each item.

Items

1 datetime

2 datetime2

3 DATEFROMPARTS

4 smalldatetime

5 date

6 EOMONTH

7 time

8 datetimeoffset

Category 1 Category 2 Category 3

Present in all versions of SQL
Server

 Only present in SQL Server
2008 and later

 Only present in SQL Server
2012 and later

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-26 Working with SQL Server 2016 Data Types

Lab: Working with SQL Server 2016 Data Types
Scenario
You are an Adventure Works business analyst who will be writing reports using corporate databases
stored in SQL Server 2016. You have been given a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. You will need to retrieve and convert
character, and date and time data into various formats.

Objectives
After completing this lab, you will be able to:

 Write queries that return date and time data.

 Write queries that use date and time functions.

 Write queries that return character data.

 Write queries that use character functions.

Estimated Time: 90 Minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Return Date and Time Data

Scenario
Before you start using different date and time functions in business scenarios, you should practice on
sample data.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Information About the Current Date

3. Write a SELECT Statement to Return the Date Data Type

4. Write a SELECT Statement That Uses Different Date and Time Functions

5. Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as Dates

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab06\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve Information About the Current Date
1. Open the project file D:\Labfiles\Lab06\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-27

2. Write a SELECT statement to return columns that contain:

 The current date and time. Use the alias currentdatetime.

 Just the current date. Use the alias currentdate.

 Just the current time. Use the alias currenttime.

 Just the current year. Use the alias currentyear.

 Just the current month number. Use the alias currentmonth.

 Just the current day of month number. Use the alias currentday.

 Just the current week number in the year. Use the alias currentweeknumber.

 The name of the current month based on the currentdatetime column. Use the alias
currentmonthname.

3. Execute the written statement and compare the results achieved with the desired results shown in the
file D:\Labfiles\Lab06\Solution\52 - Lab Exercise 1 - Task 1 Result.txt. Your results will be different
because of the current date and time value.

4. Can you use the alias currentdatetime as the source in the second column calculation (currentdate)?
Please explain.

 Task 3: Write a SELECT Statement to Return the Date Data Type
 Write December 11, 2015 as a column with a data type of date. Use the different possibilities inside

the T-SQL language (cast, convert, specific function, and so on) and use the alias somedate.

 Task 4: Write a SELECT Statement That Uses Different Date and Time Functions
1. Write a SELECT statement to return columns that contain:

 A date and time value that is three months from the current date and time. Use the alias
threemonths.

 The number of days between the current date and the first column (threemonths). Use the alias
diffdays.

 The number of weeks between April 4, 1992, and September 16, 2011. Use the alias diffweeks.

 The first day in the current month, based on the current date and time. Use the alias firstday.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab06\Solution\53 - Lab Exercise 1 - Task 3 Result.txt. Some results will
be different because of the current date and time value.

 Task 5: Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as
Dates
1. The IT department has written a T-SQL statement that creates and populates a table named

Sales.Somedates.

2. Execute the provided T-SQL statement.

3. Write a SELECT statement against the Sales.Somedates table and retrieve the isitdate column. Add a
new column named converteddate with a new date data type value, based on the column isitdate. If
the isitdate column cannot be converted to a date data type for a specific row, return a NULL.

4. Execute the written statement and compare the results achieved with the desired results shown in the
file D:\Labfiles\Lab06\Solution\54 - Lab Exercise 1 - Task 4 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-28 Working with SQL Server 2016 Data Types

Answer the following questions:

 What is the difference between the SYSDATETIME and CURRENT_TIMESTAMP functions?

 What is a language-neutral format for the DATE type?

Results: After this exercise, you should be able to retrieve date and time data using T-SQL.

Exercise 2: Writing Queries That Use Date and Time Functions

Scenario
The sales department wants to have different reports that focus on data during specific time frames. The
sales staff would like to analyze distinct customers, distinct products, and orders placed near the end of
the month. You should write the SELECT statements using the different date and time functions.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve Customers with Orders in a Given Month

2. Write a SELECT Statement to Calculate the First and Last Day of the Month

3. Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days of the Ordered Month

4. Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10 Weeks of the Year 2007

 Task 1: Write a SELECT Statement to Retrieve Customers with Orders in a Given
Month
1. In Solution Explorer, open the T-SQL script 61 - Lab Exercise 2.sql.

2. Write a SELECT statement to retrieve distinct values for the custid column from the Sales.Orders table.
Filter the results to include only orders placed in February 2008.

3. Execute the written statement and compare your results with the desired results shown in the file 62 -
Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Calculate the First and Last Day of the Month
1. Write a SELECT statement with these columns:

 Current date and time.

 First date of the current month.

 Last date of the current month.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. The results will differ because
they rely on the current date.

 Task 3: Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days
of the Ordered Month
1. Write a SELECT statement against the Sales.Orders table and retrieve the orderid, custid, and

orderdate columns. Filter the results to include only orders placed in the last five days of the order
month.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-29

 Task 4: Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10
Weeks of the Year 2007
1. Write a SELECT statement against the Sales.Orders and Sales.OrderDetails tables and retrieve all the

distinct values for the productid column. Filter the results to include only orders placed in the first 10
weeks of the year 2007.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

Results: After this exercise, you should know how to use the date and time functions.

Exercise 3: Writing Queries That Return Character Data

Scenario
Members of the marketing department would like to have a more condensed version of a report for when
they talk with customers. They want the information that currently exists in two columns displayed in a
single column.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Concatenate Two Columns

2. Add an Additional Column to the Concatenated String Which Might Contain NULL

3. Write a SELECT Statement to Retrieve Customer Contacts Based on the First Character in the Contact
Name

 Task 1: Write a SELECT Statement to Concatenate Two Columns
1. Open the T-SQL script 71 - Lab Exercise 3.sql, and ensure that you are connected to the TSQL

database.

2. Write a SELECT statement against the Sales.Customers table and retrieve the contactname and city
columns. Concatenate both columns so that the new column looks like this:

Allen, Michael (city: Berlin)

3. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Add an Additional Column to the Concatenated String Which Might Contain
NULL
1. Copy the T-SQL statement in task 1 and modify it to extend the calculated column with new

information from the region column. For concatenation purposes, treat a NULL in the region column
as an empty string. When the region is NULL, the modified column should look like this:

Allen, Michael (city: Berlin, region:)

When the region is not NULL, the modified column should look like this:

Richardson, Shawn (city: Sao Paulo, region: SP)

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-30 Working with SQL Server 2016 Data Types

 Task 3: Write a SELECT Statement to Retrieve Customer Contacts Based on the First
Character in the Contact Name
1. Write a SELECT statement to retrieve the contactname and contacttitle columns from the

Sales.Customers table. Return only rows where the first character in the contact name is ‘A’ through
‘G’.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\74 - Lab Exercise 3 - Task 3 Result.txt. Notice the number of rows
returned.

Results: After this exercise, you should have an understanding of how to concatenate character data.

Exercise 4: Writing Queries That Use Character Functions

Scenario
The marketing department want to address customers by their first and last names. In the Sales.Customers
table, there is only one column named contactname—it has both elements separated by a comma. You
will have to prepare a report to show the first and last names separately.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses the SUBSTRING Function

2. Write a Query to Retrieve the Contact’s First Name Using SUBSTRING

3. Write a SELECT Statement to Format the Customer ID

4. Challenge: Write a SELECT Statement to Return the Number of Character Occurrences

 Task 1: Write a SELECT Statement That Uses the SUBSTRING Function
1. Open the T-SQL script 81 - Lab Exercise 4.sql, and ensure that you are connected to the TSQL

database.

2. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table. Based
on this column, add a calculated column named lastname, which should consist of all the characters
before the comma.

3. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Write a Query to Retrieve the Contact’s First Name Using SUBSTRING
1. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table and

replace the comma in the contact name with an empty string. Based on this column, add a calculated
column named firstname, which should consist of all the characters after the comma.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-31

 Task 3: Write a SELECT Statement to Format the Customer ID
1. Write a SELECT statement to retrieve the custid column from the Sales.Customers table. Add a new

calculated column to create a string representation of the custid as a fixed-width (six characters)
customer code, prefixed with the letter C and leading zeros. For example, the custid value 1 should
look like C00001.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\84 - Lab Exercise 4 - Task 3 Result.txt.

 Task 4: Challenge: Write a SELECT Statement to Return the Number of Character
Occurrences
1. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table. Add a

calculated column, which should count the number of occurrences of the character ‘a’ inside the
contact name. (Hint: use the string functions REPLACE and LEN.) Order the result from highest to
lowest occurrence.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\85 - Lab Exercise 4 - Task 4 Result.txt.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the character functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-32 Working with SQL Server 2016 Data Types

Module Review and Takeaways
In this module, you have learned how to:

 Describe SQL Server data types, type precedence, and type conversions.

 Write queries using numeric data types.

 Write queries using character data types.

 Write queries using date and time data types.

Review Question(s)
Question: Will SQL Server be able to successfully and implicitly convert an int data type to a
varchar?

Question: What data type is suitable for storing Boolean flag information, such as TRUE or
FALSE?

Question: What logical operators are useful for retrieving ranges of date and time values?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-1

Module 7
Using DML to Modify Data

Contents:
Module Overview 7-1

Lesson 1: Adding Data to Tables 7-2

Lesson 2: Modifying and Removing Data 7-8

Lesson 3: Generating Automatic Column Values 7-12

Lab: Using DML to Modify Data 7-15

Module Review and Takeaways 7-18

Module Overview
Transact-SQL (T-SQL) data manipulation language (DML) is the subset of the SQL Language that contains
commands to add and modify data column values, within rows, within tables. In this module, you will
learn the basics of using INSERT to add column values to rows within tables, using UPDATE to make
changes to column values to rows within tables, and using DELETE to remove complete rows from tables.
You can also use the TRUNCATE command to delete all rows within a table quickly, without incurring an
overhead that protects accidental deletion of rows when using the DELETE statement.

You will also learn how to generate sequences of numbers using the IDENTITY property of a column, in
addition to the sequence object, which is a stand-alone object that can be applied to many columns—in
the same or different tables—to gain consistency between identities within different tables.

You can use the MERGE command to change existing columns within rows of a destination table, based
on the values stored within a source table, and comparisons between the source and destination table
contents.

Objectives
After completing this module, you will be able to:

 Write T-SQL statements that insert column values into rows within the tables.

 Write T-SQL statements that modify values in columns, within rows, within tables.

 Write T-SQL statements that remove existing rows from tables.

 Appreciate the importance of the WHERE clause when using data modification language (DML).

 Appreciate T-SQL statements that automatically generate values for columns and see how this affects
you when using DML.

 Understand the use of the MERGE statement to compare and contrast two tables and direct different
DML statements, based on their content comparisons.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-2 Using DML to Modify Data

Lesson 1
Adding Data to Tables

In this lesson, you will learn how to write queries that add new rows with column values to tables.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the INSERT statement to add data to tables.

 Use the INSERT statement with SELECT and EXEC clauses.

 Use SELECT INTO to create and populate tables without resort to data definition language (DDL).

 Describe the behavior of default constraints when rows are inserted into a table.

Using INSERT to Add Data

In SQL, the INSERT statement is used to add one or more
rows to a table. There are several forms of the statement.

Its basic syntax appears below:

INSERT Syntax

INSERT [INTO] <Table or View> [(column_list)] -- column_list is optional but the code is
safer with it
VALUES ([ColumnName or an expression or DEFAULT or NULL], .…n)

With this form, called INSERT VALUES, you can specify the columns that will have values placed in them
and the order in which the data will be presented for each row inserted into the table. In addition, you can
provide the values for those columns as a comma separated list.

When inserting values, the keyword DEFAULT means the predefined value that should be presented
where a column value has not been listed, but a value is required.

When inserting values, the keyword NULL means the predefined value that should be presented where a
column value has not been listed and a value is not required.

The following example shows the use of the INSERT VALUES statement:

Notice the correlation between the columns and the value list.

INSERT VALUES Example

USE TSQL
GO

INSERT INTO Sales.OrderDetails (OrderID, ProductID, UnitPrice, Qty, Discount)
VALUES (10248, 39, 18, 2, 0.05)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-3

If the column list is omitted, a column value or the keyword (DEFAULT or NULL) must be specified for
each column, in the order in which they are defined in the table. If a value is not specified for a column
that does not have a value automatically assigned, such as through an IDENTITY column, the INSERT
statement will fail.

In addition to inserting a single row at a time, the INSERT VALUES statement can be used to insert
multiple rows by providing multiple comma separated sets of values, themselves separated by commas,
like this:

 (1,2,3), (3,2,1), (2,2,2).

You can use T-SQL to insert multiple rows.

Insert Rows

USE TSQL
GO
INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
VALUES (10249,39,18,2,0.05), (12002,39,18,5,0.10);
-- Some people prefer this alternative layout for multiple row inserts
INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
VALUES (10250,39,18,2,0.05)
, (10251,39,18,5,0.10)
, (10252,39,18,2,0.05)
, (10254,39,18,5,0.10);

INSERT (Transact-SQL)

http://aka.ms/ifsc6i

Table Value Constructor (Transact-SQL)

http://aka.ms/rnwb93

Using INSERT with Data Providers

Beyond specifying a literal set of values in an
INSERT statement, T-SQL also supports using the
output of other operations to provide values for
INSERT. You can pass the results of a SELECT
clause or the output of a stored procedure to the
INSERT clause.

To use the SELECT statement with an INSERT
statement, build a SELECT clause to replace the
VALUES clause. With this form, called INSERT
SELECT, you can insert the set of rows returned by
a SELECT query into a destination table. The use of
INSERT SELECT presents the same considerations
as INSERT VALUES:

 You may optionally specify a column list following the table name.

 You must provide column values or DEFAULT, or NULL, for each column.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-4 Using DML to Modify Data

The following syntax illustrates the use of INSERT using the SELECT clause:

INSERT SELECT

INSERT [INTO] <table or view> [(column_list)]
SELECT <column_list> FROM <table_list>...;

Result sets from stored procedures (or even dynamic batches) may also be used as input to an INSERT
statement. This form of INSERT, called INSERT EXEC, is conceptually similar to INSERT SELECT and will
present the same considerations.

The following example shows the use of an EXEC clause to insert rows from a stored procedure:

Inserting Rows into a Table from a Stored Procedure

INSERT INTO Production.Products (productID, productname, supplierid, categoryid,
unitprice)
EXEC Production.AddNewProducts;
GO

 Note: The example above references a procedure that is not supplied with the course
database. Code to create it appears in the demonstration for this module.

Using SELECT INTO

In T-SQL, you can use the SELECT INTO statement to create
and populate a new table with the results of a SELECT query.
SELECT INTO cannot be used to insert rows into an existing
table. A new table is created, with a schema defined by the
columns in the SELECT list. Each column in the new table will
have the same name, data type, and nullability as the
corresponding column (or expression) in the SELECT list.

To use SELECT INTO, add INTO <new_target_table_name> in
the SELECT clause of the query, just before the FROM clause.

INTO clause (Transact-SQL)

http://aka.ms/qae4zn

SELECT INTO

SELECT column1
, column2
 …
INTO NewTable FROM OldTable
SELECT ordered
, custid
, empid
, orderdate
, shipcity
, shipregion
, shipcountry
INTO Sales.OrdersExport FROM Sales.Orders
WHERE empid = 5;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-5

 Note: The use of SELECT INTO requires permissions to create table objects in the
destination database. Do not try to put this clause inside a view, because it will only work once. If
a table cannot be created when the view is activated, an error will occur after the first use of the
view.

Check Your Knowledge

Question

You want to populate three columns of an existing table with data from another
table in the same database. Which of the following types of query should you use?

Select the correct answer.

 INSERT INTO <TableName> (<Columns,…>) VALUES (<Column Value> …)

 INSERT INTO <DestinationTableName> SELECT <Columns> FROM
<SourceTableName>

 INSERT INTO <DestinationTableName> EXECUTE usp_SomeStorerdProcedure

 SELECT <Columns,…> INTO DestinationTableName FROM SourceTableName

 SELECT <Columns,…> INTO SourceTableName FROM DestinationTableNAme

Demonstration: Adding Data to Tables

In this demonstration, you will see how to:

 ADD data to tables using fully qualified parameters.

 ADD data to tables with partially qualified parameters.

 Understand how to use the OUTPUT clause to monitor data changes during data INSERT.

 Understand how to insert data into a table that is produced by a stored procedure.

 Use the SELECT INTO keywords to insert data into a table.

Demonstration Steps
INSERT Data into a Table

1. Start the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines, and then log on to 20761B-MIA-
SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. In the Command Prompt window press y, and then press Enter.

5. When the script has finished, press Enter.

6. Open SQL Server Management Studio, and connect to the MIA-SQL database engine instance
using Windows authentication.

7. On the File menu, point to Open, and then click Project/Solution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-6 Using DML to Modify Data

8. In the Open Project dialog box, navigate to the D:\Demofiles\Mod07\Demo folder, click
Demo.ssmssln, and then click Open.

9. In Solution Explorer, expand Queries, and double-click 11 - Demonstration A.sql.

10. Highlight the code USE TSQL GO, and click Execute.

11. First you will populate a table with some data from a stored procedure. Highlight the code under the
comment that begins -- First try the INSERT by stored procedure:

INSERT INTO Production.Products
 (productID
 , productname
 , supplierid
 , categoryid
 , unitprice)
EXEC Production.AddNewProducts;

Click Execute. You will receive a message saying that the procedure is not there.

12. Highlight the code below the comment --Create a backup of the Products with a chosen ID, and
click Execute.

DROP TABLE IF EXISTS NewProducts
GO

SELECT * INTO NewProducts
FROM PRODUCTION.PRODUCTS WHERE ProductID >= 70

You are creating a new table for NewProducts where the Product ID >= 70.

13. You are also going to create a NewOrderDetails table that will contain rows for those products that
have been transferred into NewProducts. To do this, highlight the code under the comment -- Create
a backup of the Order Details for the chosen productID, up to the point shown in the code
section for the next step below, and click Execute:

DROP TABLE IF EXISTS NewOrderDetails
GO

SELECT * INTO NewOrderDetails
FROM SALES.OrderDetails WHERE ProductID >= 70

-- Delete the copied data from the original tables
DELETE FROM SALES.OrderDetails
OUTPUT DELETED.*
WHERE ProductID >= 70

DELETE FROM Production.Products
OUTPUT DELETED.*
WHERE ProductID >= 70

-- check that they have been transferred safely
SELECT * FROM NewProducts
SELECT * FROM NewOrderDetails

SELECT * FROM SALES.OrderDetails
WHERE productid >= 70

SELECT * FROM Production.Products
WHERE productid >= 70

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-7

14. Highlight the code below the comment Now we can put back the rows from the NewTables,
using the INSERT statement, and click Execute.

DROP PROCEDURE IF EXISTS Production.AddNewProducts
GO

CREATE PROCEDURE Production.AddNewProducts
AS
BEGIN
SELECT Productid, productname, SupplierID, CategoryID, Unitprice FROM NewProducts
END

When you click Execute, SQL Server creates the stored procedure that you were missing when you
tried to run it at the beginning of the demo.

15. Now you need to populate the original products table with the data within the secondary table as if
you were adding new rows. Highlight the code below the comment Having created it, we can run
it to feed the missing rows into the Products table:

INSERT INTO Production.Products (productid, productname, supplierid, categoryid,
unitprice)
EXEC Production.AddNewProducts;

SELECT * FROM Production.Products
WHERE productid >= 70

Click Execute to transfer the rows and see that they have been transferred.

16. For the other table, you will use the SELECT INSERT statement. Highlight the code below the
comment -- The OrderDetails will be put back using INSERT .. SELECT, and click Execute:

INSERT Sales.OrderDetails (orderid, productid, unitprice, qty, discount)
OUTPUT INSERTED.*
SELECT * FROM NewOrderDetails

17. Having seen various ways to add data to a new or existing table, you can clean up the database by
dropping the objects used in this demo. Highlight the rest of the code below -- Clean up the
database and click Execute:

DROP TABLE NewProducts
GO

DROP TABLE NewOrderDetails
GO

DROP PROCEDURE Production.AddNewProducts

18. Close SQL Server Management Studio, without saving any changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-8 Using DML to Modify Data

Lesson 2
Modifying and Removing Data

In this lesson, you will learn how to write queries that modify or remove rows from a target table. You will
also learn how to perform a MERGE between source and destination tables, in which new rows are added
and existing rows are modified in the same operation.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that modify existing rows using UPDATE.

 Write queries that modify existing rows and insert new rows using MERGE.

 Write queries that remove existing rows using DELETE.

 Remove all rows from a table using TRUNCATE.

Using UPDATE to Modify Data

SQL Server provides the UPDATE statement to
change existing data in a table or a view. UPDATE
operates on a set of rows, either defined by a
condition in a WHERE clause or defined in a join. It
uses a SET clause that can perform one or more
assignments, separated by commas, to allocate
new values to the target. The WHERE clause in an
UPDATE statement has the same structure as a
WHERE clause in a SELECT statement.

 Note: It’s important to note that an UPDATE
without a corresponding WHERE clause, and/or a
join, will target all rows that are not filtered out of the operation. Use the UPDATE statement with
caution.

The following code shows the basic syntax of the UPDATE statement:

UPDATE Syntax

UPDATE <TableName>
SET
 <ColumnName1> = { expression | DEFAULT | NULL }
 {,…n}

Any column omitted from the SET clause will not be modified by the UPDATE operation.

The following example uses the UPDATE statement to increase the price of all current products in
category 1 from the Production.Products table:

UPDATE Example

UPDATE Production.Products
 SET unitprice = (unitprice * 1.04)
WHERE categoryID = 1
AND discontinued = 0;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-9

 Note: In an earlier module, you learned that T-SQL supports compound assignment
operators. These can be used when assigning values to columns using the SET statement within
the update clause, as shown below:
UPDATE Production.Products
 SET unitprice *= 1.04
WHERE categoryID = 1
AND discontinued = 0;

UPDATE (Transact-SQL)

http://aka.ms/sbikqm

Using MERGE to Modify Data

In database operations, there is a common need
to perform a SQL MERGE operation, in which
some rows within a destination table are updated
or deleted and new rows are inserted from a
source data table. The oldest versions of SQL
Server, before support for the MERGE statement
was added, required multiple operations to
update and insert data into a destination table.
You can use the MERGE statement to insert,
update, and even delete rows from a destination
table, based on a join to a source data set, all in a
single statement.

MERGE modifies data, based on one or more conditions:

 When the source data matches the data in the target, it updates data.

 When the source data has no match in the target, it inserts data.

 When the target data has no match in the source, it deletes the target data.

 Note: Because the T-SQL implementation of MERGE supports the WHEN NOT MATCHED
BY SOURCE clause, MERGE is more than just an upsert operation—because it also deletes, it is a
delupsert or something similar.

The following code shows the general syntax of a MERGE statement:

An update is performed on the matching rows when rows are matched between the source and target. An
insert is performed when no rows to match the source are found in the target:

The MERGE Example

MERGE INTO schema_name.table_name AS TargetTbl
 USING (SELECT <select_list>) AS SourceTbl
 ON (TargetTbl.col1 = SourceTbl.col1)
 WHEN MATCHED THEN
 UPDATE SET TargetTbl.col2 = SourceTbl.col2
 WHEN NOT MATCHED THEN
 INSERT (<column_list>)
 VALUES (<value_list>);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-10 Using DML to Modify Data

The following example shows the use of a MERGE statement to update shipping information for existing
orders, or to insert rows for new orders when no match is found. Note that this example is for illustration
only and cannot be run using the sample database for this course.

See the following example:

MERGE Example

MERGE top (10) INTO Store AS Destination -- Known in online help as
Target, which is a reserved word
 USING StoreBackup AS StagingTable -- Known in online help as the source, which
is also a reserved word
 ON (Destination.BusinessEntityID =
StagingTable.BusinessEntityID)
 -- the matching
control columns
WHEN NOT MATCHED THEN
 INSERT (BusinessEntityID
 , Name
 , SalesPersonID
 , Demographics
 , rowguid
 , ModifiedDate
)
 VALUES (StagingTable.BusinessEntityID
 , StagingTable.Name
 , StagingTable.SalesPersonID
 , StagingTable.Demographics
 , StagingTable.rowguid
 , StagingTable.ModifiedDate
);

MERGE (Transact-SQL)

http://aka.ms/nbsfg7

Demonstration: Manipulating Data Using the UPDATE and DELETE
Statements and MERGING Data Using Conditional DML

In this demonstration, you will see how to:

 UPDATE row and column intersections within tables.

 DELETE complete rows from within tables.

 Apply multiple data manipulation language (DML) operations by using the MERGE statement.

 Understand how to use the OUTPUT clause to monitor data changes during DML operations.

 Understand how to access prior and current data elements, in addition to showing the DML operation
performed.

Demonstration Steps
Update and Delete Data in a Table

1. Start the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines, and then log on to 20761B-MIA-
SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. In the Command Prompt window press y, and then press Enter.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-11

5. When the script has finished, press Enter.

6. Start SQL Server Management Studio, and connect to the MIA-SQL database engine instance using
Windows authentication.

7. On the File menu, point to Open, and then click Project/Solution.

8. In the Open Project dialog box, navigate to the D:\Demofiles\Mod07\Demo folder, click
Demo.ssmssln, and then click Open.

9. In Solution Explorer, open the 21 - Demonstration B.sql script file.

10. Highlight the code USE AdventureWorks GO, and click Execute.

11. Select the code under USE AdventureWorks GO, and then click Execute.

12. Select the code under the comment Remove the copied rows from the store table, and then click
Execute.

13. Select the code under the comment Show that they have been removed, and then click Execute.

14. Select the code under the comment Use the Merge statement to put them back, and then click
Execute.

15. Select the code under the comment SELECT * FROM Sales.Store where 1 = 0 -- used to extract
column names for all columns, without cost of data access, and then click Execute.

16. Select the code under the comment Use the Merge statement to Change the names back, and
then click Execute.

17. Select the code under the comment Ensure that the environment has been restored to the state
it was in before the changes were made, and then click Execute.

18. Select the code under the comment Clean up the database, and then click Execute.

19. Close SQL Server Management Studio without saving any files.

Question: A user cannot delete records in the Cars table by using a DELETE statement. The
query was intended to remove all pool cars that have been sold. The query used was:

DELETE

FROM Scheduling.Cars

WHERE Cars.DateSold <> NULL

What mistake did the user make?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-12 Using DML to Modify Data

Lesson 3
Generating Automatic Column Values

In this lesson, you will learn how to automatically generate a sequence of numbers for use as column
values.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how to use the IDENTITY property of a column to generate a sequence of numbers when
rows are inserted into a table.

 Describe how to use a sequence object in SQL Server 2016 to generate numbers that can be used
within a column, in one or more tables.

Using IDENTITY

You may need to automatically generate
sequential values for a column in a table. SQL
Server provides two mechanisms for generating
values: the IDENTITY property, for all versions of
SQL Server, and the sequence object in SQL Server
2012-2016. Each mechanism can be used to
provide sequential numbers when rows are
inserted into a table. With the sequence object,
the number variable can be used efficiently in
multiple tables.

To use the IDENTITY property, define a column
using a numeric data type with a scale of 0—
meaning whole numbers only—and include the IDENTITY keyword.

An optional seed (starting value), and an increment (step value) can also be specified. Leaving out the
seed and increment will set them both to 1.

Only one column in a table may have the IDENTITY property set; it is customary for it to be an alternate
primary key.

The following code fragment shows an EmployeeID column defined with the IDENTITY property, a seed of
100, and an increment of 10:

IDENTITY Example

CREATE TABLE Employee
(
 EmployeeID int IDENTITY(100, 10) NOT NULL
, …
)

When an IDENTITY property is defined on a column, INSERT statements against the table do not reference
the IDENTITY column. SQL Server will generate a value using the next available value for the column. If a
value must be explicitly assigned to an IDENTITY column, the SET IDENTITY INSERT statement must be
executed to override the default behavior of the IDENTITY column.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-13

For more information, see SET IDENTITY_INSERT (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

SET IDENTITY_INSERT (Transact-SQL)
http://aka.ms/l4wavg

When a value is assigned to a column by the IDENTITY property, the value may be retrieved like any other
value in a column. Values generated by the IDENTITY property are unique within a table. However,
without a constraint on the column (such as a PRIMARY KEY or UNIQUE constraint), uniqueness is not
enforced after the value has been generated.

To return the most recently assigned value within the same session and scope, such as a stored procedure,
use the SCOPE_IDENTITY() function. The legacy @@IDENTITY function will return the last value generated
during a session, but it does not distinguish scope. You can use SCOPE_IDENTITY() for most purposes.

To reset the IDENTITY property by assigning a new seed, use the DBCC CHECKIDENT statement.

For more information, see DBCC CHECKIDENT (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

DBCC CHECKIDENT (Transact-SQL)

http://aka.ms/g3mejh

Check Your Knowledge

Question

You are using an IDENTITY column to store the sequence in which orders were
placed in a given year. It is a new year and you want to start the count again from
1. Which of the following statements should you use?

Select the correct answer.

 OrderSequence int IDENTITY(1,1) NOT NULL

 SET IDENTITY INSERT

 SCOPE_IDENTITY()

 DBCC CHECKIDENT

 CREATE SEQUENCE

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-14 Using DML to Modify Data

Using Sequences

As you have learned, the IDENTITY property is
used to generate a sequence of values for a
column within a table. However, the IDENTITY
property is not suitable for coordinating values
across multiple tables within a database. Database
administrators and developers need to create
tables of numbers manually to provide a pool of
sequential values across tables.

SQL Server 2012 provides the new sequence
object, an independent database object that is
more flexible than the IDENTITY property, and can
be referenced by multiple tables within a
database. The sequence object is created and managed with typical data definition language (DDL)
statements such as CREATE, ALTER, and DROP. SQL Server provides a command for retrieving the next
value in a sequence, such as within an INSERT statement or a default constraint in a column definition.

To define a sequence, use the CREATE SEQUENCE statement, optionally supplying the data type (must be
an integer type or decimal/numeric with a scale of 0), the starting value, an increment value, a maximum
value, and other options related to performance.

For more information, see CREATE SEQUENCE (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

CREATE SEQUENCE (Transact-SQL)
http://aka.ms/lquwo6

To retrieve the next available value from a sequence, use the NEXT VALUE FOR function. To return a range
of multiple sequence numbers in one step, use the system procedure sp_sequence_get_range.

The following code defines a sequence and returns an available value to an INSERT statement against a
sample table:

SEQUENCE Example

CREATE SEQUENCE dbo.demoSequence
 AS INT
 START WITH 1
 INCREMENT BY 1;
GO

CREATE TABLE dbo.tblDemo
 (SeqCol int PRIMARY KEY,
 ItemName nvarchar(25) NOT NULL);
GO

INSERT
 INTO dbo.tblDemo (SeqCol,ItemName)
 VALUES (NEXT VALUE FOR dbo.demoSequence, 'Item');
GO

When you use a select statement against the table, you will see that a sequence value is inserted for the
new row.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-15

Lab: Using DML to Modify Data
Scenario
You are a database developer for Adventure Works and need to create DML statements to update data in
the database to support the website development team. The team need T-SQL statements that they can
use to carry out updates to data, based on actions performed on the website. You will supply template
DML statements that they can modify to their specific requirements.

Objectives
After completing this lab, you will be able to:

 Insert records.

 Update and delete records.

Estimated Time: 30 Minutes

Virtual Machine: 20761B-MIA-SQL

User Name: ADVENTUREWORKS\STUDENT

Password: Pa$$w0rd

Exercise 1: Inserting Records with DML

Scenario
You need to add a new employee to the TempDB.Hr.Employee table and test the required T-SQL code.
You can then pass the T-SQL code to the human resources system’s web developers, who are creating a
web form to simplify this task. You also want to add all potential customers to the Customers table to
consolidate those records.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Insert a Row

3. Insert a Row with a SELECT Statement As the Data Provider

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab07\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-16 Using DML to Modify Data

 Task 2: Insert a Row
1. Open the project file D:\Labfiles\Lab07\Starter\Project\Project.ssmssln and execute the 01

setup.sql query.

2. Write an INSERT statement to add a record to the Employees table within the TempDB.HR.Employees
table, with the following values:

 Title: Sales Representative

 Titleofcourtesy: Mr

 FirstName: Laurence

 Lastname: Grider

 Hiredate: 04/04/2013

 Birthdate: 10/25/1975

 Address: 1234 1st Ave. S.E.

 City: Seattle

 Country: USA

 Phone: (206)555-0105

 Task 3: Insert a Row with a SELECT Statement As the Data Provider
 Write an INSERT statement to add all the records from the PotentialCustomers table to the Customers

table.

Results: After successfully completing this exercise, you will have one new employee and three new
customers.

Exercise 2: Update and Delete Records Using DML

Scenario
You want to update the use of contact titles in the database to match the most commonly-used term in
the company—making searches more straightforward. You also want to remove the three potential
customers who have been added to the Customers table.

The main tasks for this exercise are as follows:

1. Update Rows

2. Delete Rows

 Task 1: Update Rows
 Write an UPDATE statement to update all the records in the Customers table that have a city of

‘Berlin’ and a contacttitle of ‘Sales Representative’ to have a contacttitle of ‘Sales Consultant’.

 Task 2: Delete Rows
 Write a DELETE statement to delete all the records in the PotentialCustomers table which have the

contactname of ‘Taylor, Maurice’, ‘Mallit, Ken’, or ‘Tiano, Mike’, as these records have now been
added to the Customers table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-17

Results: After successfully completing this exercise, you will have updated all the records in the Customers
table that have a city of Berlin and a contacttitle of Sales Representative, to now have a contacttitle of
Sales Consultant. You will also have deleted the three records in the PotentialCustomers table, which have
already been added to the Customers table.

Question: What attributes of the source columns are transferred to a table created with a
SELECT INTO query?

Question: The presence of which constraint prevents TRUNCATE TABLE from executing
successfully?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-18 Using DML to Modify Data

Module Review and Takeaways
In this module, you have learned how to:

 Write T-SQL statements that insert column values into rows within the tables.

 Write T-SQL statements that modify values in columns, within rows, within tables.

 Write T-SQL statements that remove existing rows from tables.

 Appreciate the importance of the WHERE clause when using data modification language (DML).

 Appreciate T-SQL statements that automatically generate values for columns and how this affects you
when using DML.

 Understand the use of the MERGE statement to compare and contrast two tables and direct different
DML statements, based on their content comparisons.

Common Issues and Troubleshooting Tips

Common Issue Troubleshooting Tip

You are partway through the exercises
and want to start again from the
beginning. You run the setup script
within the solution and receive lots of
error messages. This might occur if you
have tried to execute the setup script
without running the cleanup script to
remove any changes you might have
made during the lab.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-1

Module 8
Using Built-In Functions

Contents:
Module Overview 8-1

Lesson 1: Writing Queries with Built-In Functions 8-2

Lesson 2: Using Conversion Functions 8-8

Lesson 3: Using Logical Functions 8-13

Lesson 4: Using Functions to Work with NULL 8-16

Lab: Using Built-in Functions 8-20

Module Review and Takeaways 8-24

Module Overview
In addition to retrieving data as it is stored in columns, you may have to compare or further manipulate
values in your T-SQL queries.

In this module, you will:

 Learn about the many built-in functions in Microsoft® SQL Server® that provide data type
conversion, comparison, and NULL handling.

 Learn about the various types of functions in SQL Server and how they are categorized.

 Work with scalar functions and see where they may be used in your queries.

 Learn conversion functions for changing data between different data types, and how to write logical
tests.

 Learn how to work with NULLs, and use built-in functions to select non-NULL values, in addition to
replacing certain values with NULL when applicable.

Objectives
After completing this module, you will be able to:

 Write queries with built-in scalar functions.

 Use conversion functions.

 Use logical functions.

 Use functions that work with NULL.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-2 Using Built-In Functions

Lesson 1
Writing Queries with Built-In Functions

SQL Server provides many built-in functions, ranging from those that perform data type conversion, to
those that aggregate and analyze groups of rows.

In this lesson, you will learn about SQL Server function types, and then work with scalar functions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the types of built-in functions provided by SQL Server.

 Write queries using scalar functions.

 Describe aggregate, window and rowset functions.

SQL Server Built-in Function Types

Functions built into SQL Server can be categorized as follows:

Function Category Description

Scalar Operate on a single row, return a single value

Grouped Aggregate Take one or more input values, return a single summarizing value

Window Operate on a window (set) of rows

Rowset Return a virtual table that can be used in a T-SQL statement

Note:

 This course will cover aggregates and window functions in later modules.

 Rowset functions are beyond the scope of this course.

 The rest of this module will cover various scalar functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-3

Scalar Functions

Scalar functions return a single value. The number
of inputs they take may range from zero (such as
GETDATE) to one (such as UPPER) to multiple
(such as DATEADD). As scalar functions always
return a single value, they can be used anywhere a
single value (the result) could exist in its own
right—from SELECT clauses to WHERE clause
predicates.

Built-in scalar functions can be organized into
many categories, such as string, conversion,
logical, mathematical, and others. This lesson will
look at a few common scalar functions.

Some considerations when using scalar functions include:

 Determinism: Will the function return the same value for the same input and database state each
time? Many built-in functions are nondeterministic, and as such, their results cannot be indexed. This
will have an impact on the query processor's ability to use an index when executing the query.

 Collation: When using functions that manipulate character data, which collation will be used? Some
functions use the collation of the input value; others use the collation of the database if no input
collation is supplied.

At the time of writing, the SQL Server 2016 Technical Documentation listed more than 200 scalar
functions. This course is not intended to provide a complete guide to all functions. The following list
provides some representative examples:

 Date and time functions (covered previously in this course).

 Mathematical functions.

 Conversion functions (covered later in this module).

 System metadata functions.

 System functions.

 Text and image functions.

The following example of the YEAR function shows a typical use of a scalar function in a SELECT clause.
The function is calculated once per row, using a column from the row as its input:

Scalar Function in a Select Clause

SELECT orderid, orderdate, YEAR(orderdate) AS orderyear
FROM Sales.Orders;

The results:

orderid orderdate orderyear
----------- ----------------------- -----------
10248 2006-07-04 00:00:00.000 2006
10249 2006-07-05 00:00:00.000 2006
10250 2006-07-08 00:00:00.000 2006

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-4 Using Built-In Functions

The following example of the mathematical ABS function shows it being used to return an absolute value
multiple times in the same SELECT clause, with differing inputs:

Returning an Absolute Value

SELECT ABS(-1.0), ABS(0.0), ABS(1.0);

The results:

--- --- ---
1.0 0.0 1.0

The following example uses the system metadata function DB_NAME() to return the name of the database
currently in use by the user's session:

Metadata Function

Select DB_NAME() AS current_database

The results:

Current_database

TSQL

For additional information about scalar functions and categories, see the SQL Server 2016 Technical
Documentation:

Built-in Functions (Transact SQL)

http://aka.ms/oor5qi

Aggregate Functions

Grouped aggregate functions operate on sets of rows defined
in a GROUP BY clause and return a summarized result.
Examples include SUM, MIN, MAX COUNT, and AVG. In the
absence of a GROUP BY clause, all rows are considered one
set; aggregation is performed on all of them.

The following example uses a COUNT function and a SUM
function to return aggregate values without a GROUP BY
clause:

Aggregate Function

SELECT COUNT(*) AS numorders, SUM(unitprice) AS totalsales
FROM Sales.OrderDetails;

The Results:

numorders totalsales
----------- -----------
2155 56500.91

 Note: Grouped aggregate functions and the GROUP BY clause will be covered in a later
module.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-5

Window Functions

Window functions allow you to perform
calculations against a user-defined set, or window,
of rows. They include ranking, offset, aggregate,
and distribution functions. Windows are defined
using the OVER clause, then window functions are
applied to the sets defined.

This example uses the RANK function to calculate
a ranking based on the unitprice, with the highest
price ranked at 1, the next highest ranked 2, and
so on:

Window Function

SELECT TOP(5) productid, productname, unitprice,
 RANK() OVER(ORDER BY unitprice DESC) AS rankbyprice
FROM Production.Products
ORDER BY rankbyprice;

The results:

productid productname unitprice rankbyprice
----------- ------------- ---------- -------------
38 Product QDOMO 263.50 1
29 Product VJXYN 123.79 2
9 Product AOZBW 97.00 3
20 Product QHFFO 81.00 4
18 Product CKEDC 62.50 5

 Note: Window functions will be covered later in this course. This example is provided for
illustration only.

Rowset Functions

Rowset functions return a virtual table that can be
used elsewhere in the query and take parameters
specific to the rowset function itself. They include
OPENDATASOURCE, OPENQUERY, OPENROWSET,
and OPENXML.

For example, the OPENQUERY function enables
you to pass a query to a linked server. It takes the
system name of the linked server and the query
expression as parameters. The results of the query
are returned as a rowset, or virtual table, to the
query containing the OPENQUERY function.

Further discussion of rowset functions is beyond
the scope of this course. For more information, see the SQL Server 2016 Technical Documentation:

Rowset Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402746

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-6 Using Built-In Functions

Demonstration: Writing Queries Using Built-in Functions

In this demonstration you will see how to:

 Use build-in scalar functions.

Demonstration Steps
Use Built-in Scalar Functions

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod08\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. When the script has finished, press Enter.

6. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod08\Demo folder.

8. In Solution Explorer, expand Queries, and then double-click 11 - Demonstration A.sql.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-7

Categorize Activity
Categorize each item into the appropriate category. Indicate your answer by writing the category number
to the right of each item.

Items

1 GETDATE()

2 SUM()

3 OPENDATASOURCE()

4 DATEADD()

5 MIN()

6 OPENQUERY()

7 UPPER()

8 MAX()

9 OPENROWSET()

10 YEAR()

11 COUNT()

12 OPENXML()

13 ABS()

14 AVG()

15 DB_NAME()

Category 1 Category 2 Category 3

Scalar Functions Aggregate Functions Rowset Functions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-8 Using Built-In Functions

Lesson 2
Using Conversion Functions

When writing T-SQL queries, it's very common to need to convert data between data types. Sometimes
the conversion happens automatically; sometimes you need to control it. In this lesson, you will learn how
to explicitly convert data between types using several SQL Server functions. You will also learn to work
with functions in SQL Server 2016 that provide additional flexibility during conversion.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the difference between implicit and explicit conversions.

 Describe when you will need to use explicit conversions.

 Explicitly convert between data types using the CAST and CONVERT functions.

 Convert strings to date and numbers with the PARSE, TRY_PARSE, and TRY_CONVERT functions.

Implicit and Explicit Data Type Conversions

Earlier in this course, you learned that there are
scenarios when data types may be converted
during SQL Server operations. You learned that
SQL Server may implicitly convert data types,
following the precedence rules for type
conversion. However, you might need to override
the type precedence, or force a conversion where
an implicit conversion might fail.

To accomplish this, you can use the CAST and
CONVERT functions, in addition to the
TRY_CONVERT function.

Some considerations when converting between
data types include:

 Collation. When CAST or CONVERT returns a character string from a character string input, the
output uses the same collation. When converting from a noncharacter type to a character, the return
value uses the collation of the database. The COLLATE option may be used with CAST or CONVERT to
override this behavior.

 Truncation. When you convert data between character or binary types and different data types, data
may be truncated, it might appear cut off, or an error could be thrown because the result is too short
to display. The end result depends on the data types involved. For example, conversion from an
integer with a two-digit value to a char(1) will return an “*” which means the character type was too
small to display the results.

For additional reading about truncation behavior, see the SQL Server 2016 Technical Documentation:

CAST and CONVERT (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-9

Converting with CAST

To convert a value from one data type to another,
SQL Server provides the CAST function. CAST is an
ANSI-standard function and is therefore
recommended over the SQL Server-specific
CONVERT function, which you will learn about in
the next topic.

As CAST is a scalar function, you may use it in
SELECT and WHERE clauses.

The following example shows how to use the CAST
function:

Converting with CAST

CAST(<value> AS <datatype>)

The following example from the TSQL sample database uses CAST to convert the orderdate from datetime
to date:

CAST Example

SELECT orderid, orderdate AS order_datetime, CAST(orderdate AS DATE) AS order_date
FROM Sales.Orders;

The results:

orderid order_datetime order_date
----------- ----------------------- ----------
10248 2006-07-04 00:00:00.000 2006-07-04
10249 2006-07-05 00:00:00.000 2006-07-05
10250 2006-07-08 00:00:00.000 2006-07-08

If the data types are incompatible, such as attempting to convert a date to a numeric value, CAST will
return an error:

CAST With Incompatible Data Types

SELECT CAST(SYSDATETIME() AS int);

The results:

Msg 529, Level 16, State 2, Line 1
Explicit conversion from data type datetime2 to int is not allowed.

For more information about CATS, see the SQL Server 2016 Technical Documentation:

CAST and CONVERT (Transact SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-10 Using Built-In Functions

Converting with CONVERT

In addition to CAST, SQL Server provides the
CONVERT function. Unlike the ANSI-standard
CAST function, the CONVERT function is
proprietary to SQL Server and is therefore not
recommended. However, because of its additional
capability to format the return value, you may
occasionally still need to use CONVERT.

As with CAST, CONVERT is a scalar function. You
may use CONVERT in SELECT and WHERE clauses.

The following example shows how to use the
CONVERT function:

Converting with CONVERT

CONVERT(<datatype>, <value>, <optional_style_number>);

The style number argument causes CONVERT to format the return data according to a specified set of
options. These cover a wide range of date and time styles, in addition to styles for numeric, XML and
binary data. Some date and time examples include:

Style Without Century Style With Century Standard Label Value

1 101 U.S. mm/dd/yyyy

2 102 ANSI yy.mm.dd - no change for
century

12 112 ISO yymmdd or yyyymmdd

The following example uses CONVERT to convert the current time from datetime to char(8):

CONVERT Example

SELECT CONVERT(CHAR(8), CURRENT_TIMESTAMP, 12) AS ISO_short, CONVERT(CHAR(8),
CURRENT_TIMESTAMP, 112) AS ISO_long;

The results:

ISO_short ISO_long
--------- --------
120212 20120212

For more information about CONVERT and its style options, see the SQL Server 2016 Technical
Documentation:

CAST and CONVERT (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-11

Converting Strings with PARSE

A very common business problem is building a date, time, or
numeric value from one or more strings, often concatenated.
SQL Server 2016 makes this task easier with the PARSE
function.

PARSE requires a string, which must be in a form
recognizable to SQL Server as a date, time, or numeric value,
and returns a value of the specified data type:

Converting Strings with PARSE

SELECT PARSE('<string_value>',<data_type> [USING <culture_code>]);

The culture parameter must be in the form of a valid .NET Framework culture code, such as “en-US” for
US English, “es-ES” for Spanish, and so on. If the culture parameter is omitted, the settings for the current
user session will be used.

The following example converts the string “02/12/2012” into a datetime2, using the en-US culture codes:

PARSE Example with Culture Code

SELECT PARSE('02/12/2012' AS datetime2 USING 'en-US') AS us_result;

The results:

us_result

2012-02-12 00:00:00.00

For more information about PARSE, including culture codes, see the SQL Server 2016 Technical
Documentation:

PARSE (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402732

Converting with TRY_PARSE and
TRY_CONVERT

When using CONVERT or PARSE, an error may occur if the
input value cannot be converted to the specified output type.

For example, if February 31, 2012 (an invalid date) is passed
to CONVERT, a runtime error is raised:

Convert Error

SELECT CONVERT(datetime2, '20120231');

The result:

--Msg 241, Level 16, State 1, Line 1
--Conversion failed when converting date and/or time from character string.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-12 Using Built-In Functions

SQL Server 2016 provides conversion functions to address this. TRY_PARSE and TRY_CONVERT will
attempt a conversion, just like PARSE and CONVERT, respectively. However, instead of raising a runtime
error, failed conversions return NULL.

The following examples compare PARSE and TRY_PARSE behavior. First, PARSE attempts to convert an
invalid date:

PARSE Error

SELECT PARSE('20120231' AS datetime2 USING 'en-US')

Returns:

NULL

Demonstration: Using Conversion Functions

In this demonstration, you will see how to:

 Use functions to convert data.

Demonstration Steps
Use Functions to Convert Data

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute. Note the error message.

5. Select the code under the comment Step 4a, and then click Execute.

6. Select the code under the comment Step 4b, and then click Execute. Note the error message.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8a, and then click Execute. Note the error message.

11. Select the code under the comment Step 8b, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Question: You are writing a query against a Human Resources database. You want to ensure
that the Employee.StartDate values are displayed in standard British form. What function
should you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-13

Lesson 3
Using Logical Functions

So far in this module, you have learned how to use built-in scalar functions to perform data conversions.
In this lesson, you will learn how to use logical functions that evaluate an expression and return a scalar
result.

Lesson Objectives
After completing this lesson, you will be able to:

 Use T-SQL functions to perform logical functions.

 Perform conditional tests with the IIF function.

 Select items from a list with CHOOSE.

Writing Logical Test with Functions

A useful function for validating the data type of an
expression is ISNUMERIC. This tests an input
expression and returns a 1 if the expression is
convertible to any numeric type, including
integers, decimals, money, floating point, and real.
If the value is not convertible to a numeric type,
ISNUMERIC returns a 0.

In the following example, which uses the TSQL
sample database, any employee with a numeric
postal code is returned:

Writing Logical Tests with Functions

SELECT empid, lastname, postalcode
FROM HR.Employees
WHERE ISNUMERIC(postalcode)=1;

The results:

empid lastname postalcode
----------- -------------------- ----------
1 Davis 10003
2 Funk 10001
3 Lew 10007
4 Peled 10009
5 Buck 10004
6 Suurs 10005
7 King 10002
8 Cameron 10006
9 Dolgopyatova 10008

Question: How might you use ISNUMERIC when testing data quality?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-14 Using Built-In Functions

Performing Conditional Tests with IIF

IIF is a logical function in SQL Server. If you have used Visual
Basic for Applications in Microsoft Excel®, used Microsoft
Access®, or created expressions in SQL Server Reporting
Services, you may have used IIF.

As in VBA, Excel and Access, IIF accepts three parameters—a
logical test to perform, a value to return if the test evaluates
to true, and a value to return if the test evaluates to false or
unknown:

IIF Syntax

SELECT IIF(<Boolean expression>,<value_if_TRUE>,<value_if_FALSE_or_UNKNOWN);

You can think of IIF as a shorthand approach to writing a CASE statement with two possible return values.
As with CASE, you may nest an IIF function within another IIF, down to a maximum level of 10.

The following example uses IIF to return a "high" or "low" label for products based on their unitprice:

IIF Example

SELECT productid, unitprice,
 IIF(unitprice > 50, 'high','low') AS pricepoint
FROM Production.Products;

Returns:

productid unitprice pricepoint
----------- --------------------- ----------
7 30.00 low
8 40.00 low
9 97.00 high
17 39.00 low
18 62.50 high

To learn more about this logical function, see IIF (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

IIF (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402748

Selecting Items from a List with CHOOSE

CHOOSE returns the value of an item at a specific index in a
list.

CHOOSE returns an item from a list, selecting the item that
matches an index value:

CHOOSE Syntax

SELECT CHOOSE(<index_value>,<item1>, <item2>[,...]);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-15

The following example uses CHOOSE to return a category name based on an input value:

CHOOSE Example

SELECT CHOOSE (3, 'Beverages', 'Condiments', 'Confections') AS choose_result;

Returns:

choose_result

Confections

 Note: If the index value supplied to CHOOSE does not correspond to a value in the list,
CHOOSE will return a NULL.

CHOOSE (Transact-SQL)

http://aka.ms/kt4v4m

Demonstration: Using Logical Functions

In this demonstration, you will see how to:

 Use logical functions.

Demonstration Steps
Using Logical Functions

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT e.FirstName, e.LastName, e.FirstAider
FROM Employees AS e

The FirstAider column contains ones and zeros. How can you change the query to make the results more
readable?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-16 Using Built-In Functions

Lesson 4
Using Functions to Work with NULL

You will often need to take special steps to deal with NULL. Earlier in this module, you learned how to test
for NULL with ISNULL. In this module, you will learn additional functions for working with NULL.

Lesson Objectives
After completing this lesson, you will be able to:

 Use ISNULL to replace NULLs.

 Use the COALESCE function to return non-NULL values.

 Use the NULLIF function to return NULL if values match.

Converting NULL with ISNULL

In addition to data type conversions, SQL Server
provides functions for conversion or replacement
of NULL. Both COALESCE and ISNULL can replace
NULL input with another value.

To use ISNULL, supply an expression to check for
NULL and a replacement value, as in the following
example, using the TSQL sample database:

For customers with a region evaluating to NULL,
the literal "N/A" is returned by the ISNULL
function in this example:

Converting NULL with ISNULL

SELECT custid, city, ISNULL(region, 'N/A') AS region, country
FROM Sales.Customers;

The result:

custid city region country
----------- --------------- --------------- ---------------
40 Versailles N/A France
41 Toulouse N/A France
43 Walla Walla WA USA
45 San Francisco CA USA

 Note: ISNULL is not standard; use COALESCE instead. COALESCE will be covered later in
this module.

ISNULL (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402750

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-17

Using COALESCE to Return Non-NULL Values

Earlier in this module, you learned how to use the
ISNULL function to test for NULL. Since ISNULL is
not ANSI standard, you may wish to use the
COALESCE function instead. COALESCE takes as its
input one or more expressions, and returns the
first non-NULL argument it finds.

With only two arguments, COALESCE behaves like
ISNULL. However, with more than two arguments,
COALESCE can be used as an alternative to a
multipart CASE expression using ISNULL.

If all arguments are NULL, COALESCE returns
NULL.

The syntax is as follows:

COALESCE Syntax

SELECT COALESCE(<expression_1>[, ...<expression_n>];

The following example returns customers with regions where available, and adds a new column
combining country, region and city, replacing NULL regions with a space:

COALESCE Example

Code Example Content
SELECT custid, country, region, city,
 country + ',' + COALESCE(region, ' ') + ', ' + city as location
FROM Sales.Customers;

Returns:

custid country region city location
------ ------- ------ ----------- ----------------------
17 Germany NULL Aachen Germany, , Aachen
65 USA NM Albuquerque USA,NM, Albuquerque
55 USA AK Anchorage USA,AK, Anchorage
83 Denmark NULL Århus Denmark, , Århus

For more information on COALESCE and comparisons to ISNULL, see the SQL Server 2016 Technical
Documentation:

COALESCE (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402751

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-18 Using Built-In Functions

Using NULLIF to Return NULL If Values Match

In this module, the NULLIF function is the first you
will learn that is designed to return NULL, if its
condition is met. NULLIF returns NULL when two
arguments match. This has useful applications in
areas such as data cleansing, when you wish to
replace blank or placeholder characters with NULL.

NULLIF takes two arguments and returns NULL if
they both match. If they are not equal, NULLIF
returns the first argument.

In this example, NULLIF replaces an empty string
(if present) with a NULL, but returns the
employee’s middle initial if it is present:

NULLIF Example

SELECT empid, lastname, firstname, NULLIF(middleinitial,' ') AS middle_initial
FROM HR.Employees;

Returns:

empid lastname firstname middle_initial
----------- -------------------- ---------- --------------
1 Davis Sara NULL
2 Funk Don D
3 Lew Judy NULL
4 Peled Yael Y

 Note: This example is provided for illustration only and will not run against the sample
database supplied with this course.

For more information, see NULLIF (Transact-SQL) in the SQL Server 2016 Technical Documentation:

NULLIF (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402752

Demonstration: Using Functions to Work with NULL

In this demonstration, you will see how to:

 Use functions to work with NULL.

Demonstration Steps
Use Functions to Work with NULL

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-19

5. Select the code under the comment Step 4a, and then click Execute.

6. Select the code under the comment Step 4b, and then click Execute.

7. Select the code under the comment Step 4c, and then click Execute.

8. Select the code under the comment Step 4d, and then click Execute.

9. Select the code under the comment Step 5, and then click Execute.

10. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Question

You are writing a query against the Employees table in the Human Resources
database. The CurrentStatus column can contain the string values “New”, “Retired”,
and “Under Caution”. Many employees have this column set to NULL when those
statuses do not apply to them. For confidentiality, you want to ensure that the
employees currently under caution are displayed like those employees with no
applicable status. What function should you use?

Select the correct answer.

 ISNULL()

 COALESCE()

 NULLIF()

 TRY_PARSE()

 PARSE()

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-20 Using Built-In Functions

Lab: Using Built-in Functions
Scenario
You are an Adventure Works business analyst, who will be writing reports using corporate databases
stored in SQL Server. You have been provided with a set of business requirements for data and you will
write T-SQL queries to retrieve the specified data from the databases. You will need to retrieve the data,
convert it, and then check for missing values.

Objectives
After completing this lab, you will be able to:

 Write queries that include conversion functions.

 Write queries that use logical functions.

 Write queries that test for nullability.

Estimated Time: 40 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Conversion Functions

Scenario
You have been asked to write the following reports for these departments:

1. Sales. The product name and unit price for each product within an easy to read string.

2. Marketing. The order id, order date, shipping date, and shipping region for each order after
4/1/2007.

3. IT. Convert all Sales phone number information into integers.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement that Uses the CAST or CONVERT Function

3. Write a SELECT Statement to Filter Rows Based on Specific Date Information

4. Write a SELECT Statement to Convert the Phone Number Information to an Integer Value

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab08\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-21

 Task 2: Write a SELECT Statement that Uses the CAST or CONVERT Function
1. Open the project file D:\Labfiles\Lab08\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Production.Products table to retrieve a calculated column
named productdesc. The calculated column should be based on the productname and unitprice
columns and look like this:

Results: The unit price for the Product HHYDP is 18.00 $.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

4. Did you use the CAST or the CONVERT function? Which one do you think is more appropriate to use?

 Task 3: Write a SELECT Statement to Filter Rows Based on Specific Date Information
1. The US marketing department has supplied you with a start date of “4/1/2007” (using US English

form, read as “April 1, 2007”) and an end date of “11/30/2007” (using US English form, read as
“November 30, 2007”).

2. Write a SELECT statement against the Sales.Orders table to retrieve the orderid, orderdate,
shippeddate, and shipregion columns. Filter the result to include only rows with the order date
between the specified start date and end date, and have more than 30 days between the shipped
date and order date. Also check the shipregion column for missing values. If there is a missing value,
then return the value “No region”.

3. In this SELECT statement, you can use the CONVERT function with a style parameter or the PARSE
function.

4. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Write a SELECT Statement to Convert the Phone Number Information to an
Integer Value
1. The IT department would like to convert all the information about phone numbers in the

Sales.Customers table to integer values. The IT staff indicated that all hyphens, parentheses, and
spaces have to be removed before the conversion to an integer data type.

2. Write a SELECT statement to implement the requirement of the IT department. Replace all the
specified characters in the phone column of the Sales.Customers table, and then convert the column
from the nvarchar datatype to the int datatype. The T-SQL statement must not fail if there is a
conversion error—it should return a NULL. (Hint: first try writing a T-SQL statement using the
CONVERT function, and then compare it with the TRY_CONVERT function.) Use the alias phoneasint
for this calculated column.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\54 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should be able to use conversion functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-22 Using Built-In Functions

Exercise 2: Writing Queries That Use Logical Functions

Scenario
The sales department would like to have different reports regarding the segmentation of customers and
specific order lines. You will add a new calculated column to show the target group for the segmentation.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Mark Specific Customers Based on Their Country and Contact Title

2. Modify the T-SQL Statement to Mark Different Customers

3. Create Four Groups of Customers

 Task 1: Write a SELECT Statement to Mark Specific Customers Based on Their
Country and Contact Title
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table and retrieve the custid and
contactname columns. Add a calculated column named segmentgroup, using a logical function IIF
with the value “Target group” for customers that are from Mexico and have the value “Owner” in
the contact title. Use the value “Other” for the rest of the customers.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Modify the T-SQL Statement to Mark Different Customers
1. Modify the T-SQL statement from task 1 to change the calculated column to show the value “Target

group” for all customers without a missing value in the region attribute or with the value “Owner” in
the contact title attribute.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab08\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Create Four Groups of Customers
1. Write a SELECT statement against the Sales.Customers table and retrieve the custid and

contactname columns. Add a calculated column named segmentgroup using the logical function
CHOOSE with four possible descriptions (“Group One”, “Group Two”, “Group Three”, “Group
Four”). Use the modulo operator on the column custid. (Use the expression custid % 4 + 1 to
determine the target group.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

Results: After this exercise, you should know how to use the logical functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-23

Exercise 3: Writing Queries That Test for Nullability

Scenario
The sales department would like to have additional segmentation of customers. Some columns that you
should retrieve contain missing values, and you will have to change the NULL to some more meaningful
information for the business users.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Customer Fax Information

2. Write a Filter for a Variable That Could Be a Null

3. Write a SELECT Statement to Return All the Customers That Do Not Have a Two-Character Abbreviation
for the Region

 Task 1: Write a SELECT Statement to Retrieve the Customer Fax Information
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the contactname and fax columns from the Sales.Customers
table. If there is a missing value in the fax column, return the value “No information”.

3. Write two solutions, one using the COALESCE function and the other using the ISNULL function.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

5. What is the difference between the ISNULL and COALESCE functions?

 Task 2: Write a Filter for a Variable That Could Be a Null
 Update the provided T-SQL statement with a WHERE clause to filter the region column using the

provided variable @region, which can have a value or a NULL. Test the solution using both provided
variable declaration cases:

DECLARE @region AS NVARCHAR(30) = NULL;
SELECT
custid, region
FROM Sales.Customers;
GO
DECLARE @region AS NVARCHAR(30) = N'WA';
SELECT
custid, region
FROM Sales.Customers;

 Task 3: Write a SELECT Statement to Return All the Customers That Do Not Have a
Two-Character Abbreviation for the Region
1. Write a SELECT statement to retrieve the contactname, city, and region columns from the

Sales.Customers table. Return only rows that do not have two characters in the region column,
including those with an inapplicable region (where the region is NULL).

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\73 - Lab Exercise 3 - Task 3 Result.txt. Notice the
number of rows returned.

Results: After this exercise, you should have an understanding of how to test for nullability.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-24 Using Built-In Functions

Module Review and Takeaways
In this module, you have learned how to:

 Write queries with built-in scalar functions.

 Use conversion functions.

 Use logical functions.

 Use functions that work with NULL.

 Best Practice:

 When possible, use standards-based functions, such as CAST or COALESCE, rather than SQL
Server-specific functions like NULLIF or CONVERT.

 Consider the impact of functions in a WHERE clause on query performance.

Review Question(s)
Question: Which function should you use to convert from an int to a nchar(8)?

Question: Which function will return a NULL, rather than an error message, if it cannot
convert a string to a date?

Question: What is the name for a function that returns a single value?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-1

Module 9
Grouping and Aggregating Data

Contents:
Module Overview 9-1

Lesson 1: Using Aggregate Functions 9-2

Lesson 2: Using the GROUP BY Clause 9-9

Lesson 3: Filtering Groups with HAVING 9-15

Lab: Grouping and Aggregating Data 9-18

Module Review and Takeaways 9-24

Module Overview
In addition to row-at-a-time queries, you may need to summarize data to analyze it. Microsoft® SQL
Server® provides built-in functions that can aggregate, or summarize, information across multiple rows.
In this module, you will learn how to use aggregate functions. You will also learn how to use the GROUP
BY and HAVING clauses to break up the data into groups for summarizing, and to filter the resulting
groups.

Objectives
After completing this lesson, you will be able to:

 List the built-in aggregate functions provided by SQL Server.

 Write queries that use aggregate functions in a SELECT list to summarize all the rows in an input set.

 Describe the use of the DISTINCT option in aggregate functions.

 Write queries using aggregate functions that handle the presence of NULLs in source data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-2 Grouping and Aggregating Data

Lesson 1
Using Aggregate Functions

In this lesson, you will learn how to use built-in functions to aggregate, or summarize, data in multiple
rows. SQL Server provides functions such as SUM, MAX, and AVG to perform calculations that take
multiple values and return a single result.

Lesson Objectives
After completing this lesson, you will be able to:

 List the built-in aggregate functions provided by SQL Server.

 Write queries that use aggregate functions in a SELECT list to summarize all the rows in an input set.

 Describe the use of the DISTINCT option in aggregate functions.

 Write queries using aggregate functions that handle the presence of NULLs in source data.

Working with Aggregate Functions

So far in this course, you have learned how to operate on
a row at a time, using a WHERE clause to filter rows,
adding computed columns to a SELECT list, and
processing across columns, but within each row.

You may also need to perform analysis across rows, such
as counting rows that meet your criteria, or summarizing
total sales for all orders. To accomplish this, you will use
aggregate functions capable of operating on multiple
rows simultaneously.

Many aggregate functions are provided in SQL Server. In this course, you will learn about common
functions such as SUM, MIN, MAX, AVG, and COUNT.

When working with aggregate functions, you need to consider the following:

 Aggregate functions return a single (scalar) value and can be used in SELECT statements where a
single expression is used, such as SELECT, HAVING, and ORDER BY clauses.

 Aggregate functions ignore NULLs, except when using COUNT(*). You will learn more about this later
in the lesson.

 Aggregate functions in a SELECT list do not generate a column alias. You may wish to use the AS
clause to provide one.

 Aggregate functions in a SELECT clause operate on all rows passed to the SELECT phase. If there is no
GROUP BY clause, all rows will be summarized, as in the slide above. You will learn more about
GROUP BY in the next lesson.

To extend beyond the built-in functions, SQL Server provides a mechanism for user-defined aggregate
functions via the .NET Common Language Runtime (CLR).

For more information on other built-in aggregate functions, see the SQL Server 2016 Technical
Documentation:

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-3

Built-in Aggregate Functions

SQL Server provides many built-in aggregate functions.
Commonly used functions include:

Function
Name Syntax Description

SUM SUM(<expression>) Totals all the non-NULL numeric values in a column.

AVG AVG(<expression>) Averages all the non-NULL numeric values in a column
(sum/count).

MIN MIN(<expression>) Returns the largest number, earliest date/time, or first-
occurring string (according to collation sort rules).

MAX MAX(<expression>) Returns the largest number, latest date/time, or last-
occurring string (according to collation sort rules).

COUNT or
COUNT_BIG

COUNT(*) or
COUNT(<expression>)

With (*), counts all rows, including those with NULL values.
When a column is specified as <expression>, returns count
of non-NULL rows for that column. COUNT returns an int;
COUNT_BIG returns a big_int.

This lesson only covers common aggregate functions. For information on other built-in aggregate
functions, see the SQL Server 2016 Technical Documentation:

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

To use a built-in aggregate in a SELECT clause, consider the following example in the TSQL sample
database:

Aggregate Example

SELECT AVG(unitprice) AS avg_price,
 MIN(qty)AS min_qty,
 MAX(discount) AS max_discount
FROM Sales.OrderDetails;

Note that the above example does not use a GROUP BY clause. Therefore, all rows from the
Sales.OrderDetails table will be summarized by the aggregate formulas in the SELECT clause.

The results:

avg_price min_qty max_discount

--------- ------- ------------

26.2185 1 0.250

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-4 Grouping and Aggregating Data

When using aggregates in a SELECT clause, all columns referenced in the SELECT list must be used as
inputs for an aggregate function, or be referenced in a GROUP BY clause.

The following example query will return an error:

Partial Aggregate Error

SELECT orderid, AVG(unitprice) AS avg_price, MIN(qty)AS min_qty, MAX(discount) AS
max_discount
FROM Sales.OrderDetails;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.OrderDetails.orderid' is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

Since our example is not using a GROUP BY clause, the query treats all rows as a single group. Therefore,
all columns must be used as inputs to aggregate functions. Removing orderid from the previous example
will prevent the error.

In addition to numeric data, such as the price and quantities in the previous example, aggregate
expressions can also summarize date, time, and character data. The following examples show the use of
aggregates with dates and characters:

This query returns first and last company by name, using MIN and MAX:

Aggregating Character Data

SELECT MIN(companyname) AS first_customer, MAX(companyname) AS last_customer
FROM Sales.Customers;

Returns:

first_customer last_customer

-------------- --------------

Customer AHPOP Customer ZRNDE

Other functions may coexist with aggregate functions.

For example, the YEAR scalar function is used in the following illustration to return only the year portion
of the order date, before MIN and MAX are evaluated:

Aggregating with Functions

SELECT MIN(YEAR(orderdate))AS earliest, MAX(YEAR(orderdate)) AS latest
FROM Sales.Orders;

Returns:

earliest latest

-------- -------

2006 2008

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-5

Using DISTINCT with Aggregate Functions

Earlier in this course, you learned about the use of DISTINCT
in a SELECT clause to remove duplicate rows. When used with
an aggregate function, DISTINCT removes duplicate values
from the input column before computing the summary value.
This is useful when summarizing unique occurrences of
values, such as customers in the TSQL orders table.

The following example returns customers who have placed
orders, grouped by employee ID and year:

Summarizing Distinct Values

SELECT empid, YEAR(orderdate) AS orderyear,
 COUNT(custid) AS all_custs,
 COUNT(DISTINCT custid) AS unique_custs
FROM Sales.Orders
GROUP BY empid, YEAR(orderdate);

Note that the above example uses a GROUP BY clause. GROUP BY will be covered in the next lesson. It is
used here as a useful example for comparing DISTINCT and non-DISTINCT aggregate functions.

This returns, in part:

empid orderyear all_custs unique_custs

--------------- --------- ------------

1 2006 26 22

1 2007 55 40

1 2008 42 32

2 2006 16 15

2 2007 41 35

2 2008 39 34

3 2006 18 16

3 2007 71 46

3 2008 38 30

Note the difference in each row between the COUNT of custid (in column 3) and the DISTINCT COUNT in
column 4. Column 3 simply returns all rows except those containing NULL. Column 4 excludes duplicate
custids (repeat customers) and returns a count of unique customers, answering the question: “How many
customers per employee?”

Question: Could you accomplish the same output with the use of SELECT DISTINCT?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-6 Grouping and Aggregating Data

Using Aggregate Functions with NULL

As you have learned in this course, it is important to
be aware of the possible presence of NULLs in your
data, and of how NULL interacts with T-SQL query
components. This is also true with aggregate
expressions. There are a few considerations to be
aware of:

 With the exception of COUNT used with the (*)
option, T-SQL aggregate functions ignore
NULLs. This means, for example, that a SUM
function will add only non-NULL values. NULLs
do not evaluate to zero.

 The presence of NULLs in a column may lead to
inaccurate computations for AVG, which will sum only populated rows and divide that sum by the
number of non-NULL rows. There may be a difference in results between AVG(<column>) and
(SUM(<column>)/COUNT(*)).

For example, the following table named t1:

C1 C2

1 NULL

2 10

3 20

4 30

5 40

6 50

The following query illustrates the difference between how AVG handles NULL and how you might
calculate an average with a SUM/COUNT(*) computed column:

Aggregating NULL Example

SELECT SUM(c2) AS sum_nonnulls,
 COUNT(*)AS count_all_rows,
 COUNT(c2)AS count_nonnulls,
 AVG(c2) AS [avg],
 (SUM(c2)/COUNT(*))AS arith_avg
FROM t1;

The result:

sum_nonnulls count_all_rows count_nonnulls avg arith_avg
------------ -------------- -------------- --- ---------
150 6 5 30 25

If you need to summarize all rows, whether NULL or not, consider replacing the NULLs with another value
that can be used by your aggregate function.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-7

The following example replaces NULLs with 0 before calculating an average. The table named t2 contains
the following rows:

c1 c2

----------- -----------

1 1

2 10

3 1

4 NULL

5 1

6 10

7 1

8 NULL

9 1

10 10

11 1

12 10

Compare the effect on the arithmetic mean with NULLs-ignored versus replaced with 0.

Replace NULLs with Zeros Example

SELECT AVG(c2) AS AvgWithNULLs, AVG(COALESCE(c2,0)) AS AvgWithNULLReplace
FROM dbo.t2;

This returns the following results, with a warning message:

AvgWithNULLs AvgWithNULLReplace
------------ ------------------
4 3
Warning: Null value is eliminated by an aggregate or other SET operation.

 Note: This example cannot be executed against the sample database used in this course.
You will find a script to create the table in the upcoming demonstration.

Demonstration: Using Aggregate Functions

In this demonstration, you will see how to:

 Use built-in aggregate functions.

Demonstration Steps
Use Built-in Aggregate Functions

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod09\Setup.cmd as an administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-8 Grouping and Aggregating Data

3. In the User Account Control dialog box, click Yes.

4. Start SQL Server Management Studio and connect to the MIA-SQL database instance using Windows
authentication.

5. On the File menu, point to Open, and then click Project/Solution.

6. In the Open Project dialog box, navigate to the D:\Demofiles\Mod09\Demo folder, click
Demo.ssmssln, and then click Open.

7. In Solution Explorer, expand Queries, and then double-click 11 - Demonstration A.sql.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2a, and then click Execute.

10. Select the code under the comment Step 2b, and then click Execute.

11. Select the code under the comment Step 2c, and then click Execute.

12. Select the code under the comment Step 2d, and then click Execute.

13. Select the code under the comment Step 2e, and then click Execute.

14. Select the code under the comment Step 2f, and then click Execute.

15. Select the code under the comment Step 2g, and then click Execute.

16. Select the code under the comment Step 3a, and then click Execute.

17. Select the code under the comment Step 3b, and then click Execute.

18. Select the code under the comment Step 3c, and then click Execute.

19. Select the code under the comment Step 3d, and then click Execute.

20. Select the code under the comment Step 3e, and then click Execute.

21. Select the code under the comment Step 3f, and then click Execute.

22. Select the code under the comment Step 3g, and then click Execute.

23. Select the code under the comment Step 3h, and then click Execute.

24. Select the code under the comment Step 3i, and then click Execute.

25. Select the code under the comment Step 4, and then click Execute.

26. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT COUNT(*) AS RecordCount

FROM Sales.Products;

There are 250 records in the Products table. How many rows will be returned by this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-9

Lesson 2
Using the GROUP BY Clause

While aggregate functions are useful for analysis, you may wish to arrange your data into subsets before
summarizing it. In this lesson, you will learn how to accomplish this using the GROUP BY clause.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that separate rows into groups using the GROUP BY clause.

 Describe the role of the GROUP BY clause in the logical order of operations for processing a SELECT
statement.

 Write SELECT clauses that reflect the output of a GROUP BY clause.

 Use GROUP BY with aggregate functions.

Using the GROUP BY Clause

As you have learned, when your SELECT statement is
processed, after the FROM clause and WHERE clause (if
present) have been evaluated, a virtual table is created. The
contents of the virtual table are now available for further
processing. You can use the GROUP BY clause to subdivide
the results of the preceding query phases into groups of
rows.

To group rows, specify one or more elements in the GROUP
BY clause:

GROUP BY Syntax

GROUP BY <value1> [, <value2>, …]

GROUP BY creates groups and places rows into each group as determined by unique combinations of the
elements specified in the clause.

For example, the following snippet of a query will result in a set of grouped rows, one per empid, in the
Sales.Orders table:

GROUP BY Snippet

FROM SalesOrders
GROUP BY empid;

Once the GROUP BY clause has been processed and rows have been associated with a group, subsequent
phases of the query must aggregate any elements of the source rows that do not appear in the GROUP BY
list. This will have an impact on how you write your SELECT and HAVING clauses.

To see the results of the GROUP BY clause, you will need to add a SELECT clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-10 Grouping and Aggregating Data

This shows the original 830 source rows being grouped into nine groups, based on the unique employee
ID:

GROUP BY Example

SELECT empid, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

The result:

empid cnt
----- -----
1 123
2 96
3 127
4 156
5 42
6 67
7 72
8 104
9 43
(9 row(s) affected)

To learn more about GROUP BY, see GROUP BY (Transact SQL) in the SQL Server 2016 Technical
Documentation:

GROUP BY (Transact-SQL)

http://aka.ms/ro266s

GROUP BY and the Logical Order of Operations

A common obstacle to becoming comfortable with
using GROUP BY in SELECT statements is
understanding why the following type of error
message occurs:

Msg 8120, Level 16, State 1, Line 2

Column <column_name> is invalid in the select list
because it is not contained in either an aggregate
function or the GROUP BY clause.

A review of the logical order of operations during
query processing will help clarify this issue.

As mentioned earlier in the course, the SELECT
clause is not processed until after the FROM, WHERE, GROUP BY, and HAVING clauses (if present) are
processed. When discussing the use of GROUP BY, it is important to remember that not only does GROUP
BY precede SELECT, but it also replaces the results of the FROM and WHERE clauses with its own results.
The final outcome of the query will only return one row per qualifying group (if a HAVING clause is
present). Therefore, any operations performed after GROUP BY, including SELECT, HAVING, and ORDER
BY, are performed on the groups, not the original detail rows. Columns in the SELECT list, for example,
must return a scalar value per group. This may include the column(s) being grouped on, or aggregate
functions being performed on, each group.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-11

The following query is permitted because each column in the SELECT list is either a column in the GROUP
BY clause or an aggregate function operating on each group:

GROUP BY Example

SELECT empid, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

This returns:

empid count

----- -----

1 123

2 96

3 127

4 156

5 42

6 67

7 72

8 104

9 43

The following query will return an error because orderdate is not an input to GROUP BY, and its data has
been "lost" following the FROM clause:

Missing GROUP BY Value

SELECT empid, orderdate, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.Orders.orderdate' is invalid in the select list because it is not contained

in either an aggregate function or the GROUP BY clause.

If you want to see orders per employee ID and per order date, add it to the GROUP BY clause, as follows:

Correct GROUP BY Example

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid, YEAR(orderdate)
ORDER BY empid, YEAR(orderdate);

This returns (in part):

empid orderyear count

----- --------- -----

1 2006 26

1 2007 55

1 2008 42

2 2006 16

2 2007 41

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-12 Grouping and Aggregating Data

The net effect of this behavior is that you cannot combine a view of summary data with the detailed
source date, using the T-SQL tools you have learned about so far. You will learn some approaches to
solving the problem later in this course.

For more information about troubleshooting GROUP BY errors, see:

Troubleshooting GROUP BY Errors

http://aka.ms/yi931j

GROUP BY Workflow

Initially, the WHERE clause is processed followed by the
GROUP BY. The slide shows the results of the WHERE
clause, followed by the GROUP BY being performed on
these results.

The source queries required to build the demonstration on
the slide follow and are included with the demonstration
file for this lesson:

Source Queries

SELECT SalesOrderID, SalesPersonID, CustomerID
FROM Sales.SalesOrderHeader;

SELECT SalesOrderID, SalesPersonID, CustomerID
FROM Sales.SalesOrderHeader
WHERE CustomerID IN (29777, 30010);

SELECT SalesPersonID, COUNT(*)
FROM Sales.SalesOrderHeader
WHERE CustomerID IN (29777, 30010)
GROUP BY SalesPersonID;

Using GROUP BY with Aggregate Functions

As you have seen, if you use a GROUP BY clause in a
T-SQL query, all columns listed in the SELECT clause
must either be used in the GROUP BY clause itself,
or be inputs to aggregate functions operating on
each group.

You have seen the use of the COUNT function in
conjunction with GROUP BY queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-13

Other aggregate functions may also be used, as in the following example, which uses MAX to return the
largest quantity ordered per product:

GROUP BY with Aggregate Example

SELECT productid, MAX(qty) AS largest_order
FROM Sales.OrderDetails
GROUP BY productid;

This returns (in part):

productid largest_order

----------- -------------

23 70

46 60

69 65

29 80

75 120

 Note: The qty column, used as an input to the MAX function, is not used in the GROUP BY
clause. This illustrates that, even though the detail rows returned by the FROM ... WHERE phase
are lost to the GROUP BY phase, the source columns are still available for aggregation.

Demonstration: Using GROUP BY

In this demonstration, you will see how to:

 Use the GROUP BY clause.

Demonstration Steps
Use the GROUP BY Clause

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2a, and then click Execute.

4. Select the code under the comment Step 2b, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4a, and then click Execute.

7. Select the code under the comment Step 4b, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-14 Grouping and Aggregating Data

Check Your Knowledge

Question

You are writing the following T-SQL query to find out how many employees work in
each department in your organization:

SELECT d.DepartmentID, d.DepartmentName, COUNT(e.EmployeeID) AS

EmployeeCount

FROM HumanResources.Departments AS d

INNER JOIN HumanResources.Employees AS e

ON d.DepartmentID = e.DepartmentID

GROUP BY

Which columns should be included in the GROUP BY clause?

Select the correct answer.

 All Columns

 EmployeeCount

 DepartmentID, DepartmentName

 DepartmentID

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-15

Lesson 3
Filtering Groups with HAVING

When you have created groups with a GROUP BY clause, you can further filter the results. The HAVING
clause acts as a filter on groups, much like the WHERE clause acts as a filter on rows returned by the
FROM clause. In this lesson, you will learn how to write a HAVING clause and understand the differences
between HAVING and WHERE.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the HAVING clause to filter groups.

 Compare HAVING to WHERE.

 Choose the appropriate filter for a scenario: WHERE or HAVING.

Filtering Grouped Data Using the HAVING
Clause

If a WHERE clause and a GROUP BY clause are present in a T-
SQL SELECT statement, the HAVING clause is the fourth phase
of logical query processing:

Logical Order Phase Comments

5 SELECT

1 FROM

2 WHERE Operates on rows

3 GROUP BY Creates groups

4 HAVING Operates on groups

6 ORDER BY

A HAVING clause enables you to create a search condition, conceptually similar to the predicate of a
WHERE clause, which then tests each group returned by the GROUP BY clause.

The following example from the TSQL database groups all orders by customer, then returns only those
who have placed orders. No HAVING clause has been added, so no filter is applied to the groups:

GROUP BY Without HAVING Clause

SELECT custid, COUNT(*) AS count_orders
FROM Sales.Orders
GROUP BY custid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-16 Grouping and Aggregating Data

Returns the groups, with the following message:

(89 row(s) affected)

The following example adds a HAVING clause to the previous query. It groups all orders by customer,
then returns only those who have placed 10 or more orders. Groups containing customers who placed
fewer than 10 rows are discarded:

GROUP BY with HAVING Clause

SELECT custid, COUNT(*) AS count_orders
FROM Sales.Orders
GROUP BY custid
HAVING COUNT(*) >= 10;

Returns the groups with the following message:

(28 row(s) affected)

 Note: Remember that HAVING is processed before the SELECT clause, so any column
aliases created in a SELECT clause are not available to the HAVING clause.

HAVING (Transact-SQL)

http://aka.ms/wsrrp0

Compare HAVING to WHERE

While both HAVING and WHERE clauses filter data,
it is important to remember that WHERE operates
on rows returned by the FROM clause. If a GROUP
BY ... HAVING section exists in your query following
a WHERE clause, the WHERE clause will filter rows
before GROUP BY is processed—potentially limiting
the groups that can be created.

A HAVING clause is processed after GROUP BY and
only operates on groups, not detail rows. To
summarize:

 A WHERE clause controls which rows are
available to the next phase of the query.

 A HAVING clause controls which groups are available to the next phase of the query.

 Note: WHERE and HAVING clauses are not mutually exclusive.

You will see a comparison between WHERE and HAVING in the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-17

Demonstration: Filtering Groups with HAVING

In this demonstration, you will see how to:

 Filter grouped data using the HAVING clause.

Demonstration Steps
Filter Grouped Data Using the HAVING Clause

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2a, and then click Execute.

4. Select the code under the comment Step 2b, and then click Execute.

5. Select the code under the comment Step 2c, and then click Execute. Note the error message.

6. Select the code under the comment Step 2d, and then click Execute.

7. Select the code under the comment Step 2e, and then click Execute.

8. Select the code under the comment Step 2f, and then click Execute.

9. Select the code under the comment Step 2g, and then click Execute.

10. Select the code under the comment Step 2h, and then click Execute.

11. Select the code under the comment Step 2i, and then click Execute.

12. Close SQL Server Management Studio without saving any files.

Question: You are writing a query to count the number of orders placed for each product. You
have the following query:

SELECT p.ProductName, COUNT(*) AS OrderCount

FROM Sales.Products AS p

JOIN Sales.OrderItems AS o

ON p.ProductID = o.ProductID

GROUP BY p.ProductName;

You want to change the query to return only products that cost more than $10. Should you add a
HAVING clause or a WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-18 Grouping and Aggregating Data

Lab: Grouping and Aggregating Data
Scenario
You are an Adventure Works business analyst, who will be writing reports using corporate databases
stored in SQL Server. You have been given a set of business requirements for data and you will write T-
SQL queries to retrieve it from the databases. You will need to perform calculations upon groups of data
and filter according to the results.

Objectives
After completing this lab, you will be able to:

 Write queries that use the GROUP BY clause.

 Write queries that use aggregate functions.

 Write queries that use distinct aggregate functions.

 Write queries that filter groups with the HAVING clause.

Estimated Time: 60 Minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use the GROUP BY Clause

Scenario
The sales department want to create additional upsell opportunities from existing customers. The staff
need to analyze different groups of customers and product categories, depending on several business
rules. Based on these rules, you will write SELECT statements to retrieve the needed rows from the
Sales.Customers table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Different Groups of Customers

3. Add an Additional Column From the Sales.Customers Table

4. Write a SELECT Statement to Retrieve the Customers with Orders for Each Year

5. Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a Specific Year

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab09\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve Different Groups of Customers
1. Open the project file D:\Labfiles\Lab09\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-19

2. Write a SELECT statement that will return groups of customers who made a purchase. The SELECT
clause should include the custid column from the Sales.Orders table, and the contactname column
from the Sales.Customers table. Group both columns and filter only the orders from the sales
employee whose empid equals five.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\52 - Lab Exercise 1 - Task 2 Result.txt.

 Task 3: Add an Additional Column From the Sales.Customers Table
1. Copy the T-SQL statement in task 1 and modify it to include the city column from the

Sales.Customers table in the SELECT clause.

2. Execute the query.

3. You will get an error. What is the error message? Why?

4. Correct the query so that it will execute properly.

5. Execute the query and compare the results that you achieved with the desired results shown in the
file D:\Labfiles\Lab09\Solution\53 - Lab Exercise 1 - Task 3 Result.txt.

 Task 4: Write a SELECT Statement to Retrieve the Customers with Orders for Each
Year
1. Write a SELECT statement that will return groups of rows based on the custid column and a

calculated column orderyear representing the order year based on the orderdate column from the
Sales.Orders table. Filter the results to include only the orders from the sales employee whose empid
equals five.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\54 - Lab Exercise 1 - Task 4 Result.txt.

 Task 5: Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a
Specific Year
1. Write a SELECT statement to retrieve groups of rows based on the categoryname column in the

Production.Categories table. Filter the results to include only the product categories that were
ordered in the year 2008.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\55 - Lab Exercise 1 - Task 5 Result.txt.

Results: After this exercise, you should be able to use the GROUP BY clause in the T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-20 Grouping and Aggregating Data

Exercise 2: Writing Queries That Use Aggregate Functions

Scenario
The marketing department wants to launch a new campaign, so the staff need to gain a better insight into
the existing customers’ buying behavior. You should create different sales reports, based on the total and
average sales amount per year and per customer.

The main tasks for this exercise are as follows:

1. Write a SELECT statement to Retrieve the Total Sales Amount Per Order

2. Add Additional Columns

3. Write a SELECT Statement to Retrieve the Sales Amount Value Per Month

4. Write a SELECT Statement to List All Customers with the Total Sales Amount and Number of Order Lines
Added

 Task 1: Write a SELECT statement to Retrieve the Total Sales Amount Per Order
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the orderid column from the Sales.Orders table and the total
sales amount per orderid. (Hint: multiply the qty and unitprice columns from the Sales.OrderDetails
table.) Use the alias salesamount for the calculated column. Sort the result by the total sales amount
in descending order.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Add Additional Columns
1. Copy the T-SQL statement in task 1 and modify it to include the total number of order lines for each

order and the average order line sales amount value within the order. Use the aliases nooforderlines
and avgsalesamountperorderline, respectively.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve the Sales Amount Value Per Month
1. Write a select statement to retrieve the total sales amount for each month. The SELECT clause should

include a calculated column named yearmonthno (YYYYMM notation), based on the orderdate
column in the Sales.Orders table and a total sales amount (multiply the qty and unitprice columns
from the Sales.OrderDetails table). Order the result by the yearmonthno calculated column.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab09\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-21

 Task 4: Write a SELECT Statement to List All Customers with the Total Sales Amount
and Number of Order Lines Added
1. Write a select statement to retrieve all the customers (including those who did not place any orders)

and their total sales amount, maximum sales amount per order line, and number of order lines.

2. The SELECT clause should include the custid and contactname columns from the Sales.Customers
table and four calculated columns based on appropriate aggregate functions:

a. totalsalesamount, representing the total sales amount per order

b. maxsalesamountperorderline, representing the maximum sales amount per order line

c. numberofrows, representing the number of rows (use * in the COUNT function)

d. numberoforderlines, representing the number of order lines (use the orderid column in the
COUNT function)

3. Order the result by the totalsalesamount column.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

5. Notice that the custid 22 and 57 rows have a NULL in the columns with the SUM and MAX aggregate
functions. What are their values in the COUNT columns? Why are they different?

Exercise 3: Writing Queries That Use Distinct Aggregate Functions

Scenario
The marketing department want to have some additional reports that display the number of customers
who made any order in a specific time period and the number of customers based on the first letter in the
contact name.

The main tasks for this exercise are as follows:

1. Modify a SELECT Statement to Retrieve the Number of Customers

2. Write a SELECT Statement to Analyze Segments of Customers

3. Write a SELECT Statement to Retrieve Additional Sales Statistics

 Task 1: Modify a SELECT Statement to Retrieve the Number of Customers
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. A junior analyst prepared a T-SQL statement to retrieve the number of orders and the number of
customers for each order year. Observe the provided T-SQL statement and execute it:

SELECT

YEAR(orderdate) AS orderyear,

COUNT(orderid) AS nooforders,

COUNT(custid) AS noofcustomers

FROM Sales.Orders

GROUP BY YEAR(orderdate);

3. Observe the results. Notice that the number of orders is the same as the number of customers. Why?

4. Amend the T-SQL statement to show the correct number of customers who placed an order for each
year.

5. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-22 Grouping and Aggregating Data

 Task 2: Write a SELECT Statement to Analyze Segments of Customers
1. Write a SELECT statement to retrieve the number of customers based on the first letter of the values

in the contactname column from the Sales.Customers table. Add an additional column to show the
total number of orders placed by each group of customers. Use the aliases firstletter,
noofcustomers and nooforders. Order the result by the firstletter column.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve Additional Sales Statistics
1. Copy the T-SQL statement in exercise 1, task 5, and modify to include the following information

about each product category—total sales amount, number of orders, and average sales amount per
order. Use the aliases totalsalesamount, nooforders, and avgsalesamountperorder, respectively.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should have an understanding of how to apply a DISTINCT aggregate
function.

Exercise 4: Writing Queries That Filter Groups with the HAVING Clause

Scenario
The sales and marketing departments were satisfied with the reports you provided to analyze customers’
behavior. Now they would like to have the results filtered, based on the total sales amount and number of
orders. So, in the final exercise, you will learn how to filter the result, based on aggregated functions, and
learn when to use the WHERE and HAVING clauses.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Top 10 Customers

2. Write a SELECT Statement to Retrieve Specific Orders

3. Apply Additional Filtering

4. Retrieve the Customers with More Than 25 Orders

 Task 1: Write a SELECT Statement to Retrieve the Top 10 Customers
1. Open the T-SQL script 81 - Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the top 10 customers (by total sales amount) who spent more
than $10,000. Display the custid column from the Orders table and a calculated column that
contains the total sales amount, based on the qty and unitprice columns from the
Sales.OrderDetails table. Use the alias totalsalesamount for the calculated column.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-23

 Task 2: Write a SELECT Statement to Retrieve Specific Orders
1. Write a SELECT statement against the Sales.Orders and Sales.OrderDetails tables, and display the

empid column and a calculated column representing the total sales amount. Filter the results to
group only the rows with an order year 2008.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Apply Additional Filtering
1. Copy the T-SQL statement in task 2 and modify it to apply an additional filter to retrieve only the

rows that have a sales amount higher than $10,000.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\84 - Lab Exercise 4 - Task 3_1 Result.txt.

3. Apply an additional filter to show only employees with empid equal to 3.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\85 - Lab Exercise 4 - Task 3_2 Result.txt.

5. Did you apply the predicate logic in the WHERE clause or the HAVING clause? Which do you think is
better? Why?

 Task 4: Retrieve the Customers with More Than 25 Orders
1. Write a SELECT statement to retrieve all customers who placed more than 25 orders and add

information about the date of the last order and the total sales amount. Display the custid column
from the Sales.Orders table and two calculated columns— lastorderdate based on the orderdate
column, and totalsalesamount based on the qty and unitprice columns in the Sales.OrderDetails
table.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab09\Solution\86 - Lab Exercise 4 - Task 4 Result.txt.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the HAVING clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-24 Grouping and Aggregating Data

Module Review and Takeaways
In this lesson, you have learned how to:

 List the built-in aggregate functions provided by SQL Server.

 Write queries that use aggregate functions in a SELECT list to summarize all the rows in an input set.

 Describe the use of the DISTINCT option in aggregate functions.

 Write queries using aggregate functions that handle the presence of NULLs in source data.

Review Question(s)
Question: What is the difference between the COUNT function and the COUNT_BIG
function?

Question: Can a GROUP BY clause include more than one column?

Question: In a query, can a WHERE clause and a HAVING clause filter on the same column?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-1

Module 10
Using Subqueries

Contents:
Module Overview 10-1

Lesson 1: Writing Self-Contained Subqueries 10-2

Lesson 2: Writing Correlated Subqueries 10-7

Lesson 3: Using the EXISTS Predicate with Subqueries 10-10

Lab: Using Subqueries 10-13

Module Review and Takeaways 10-18

Module Overview
At this point in the course, you have learned many aspects of the T-SQL SELECT statement, but each query
you have written has been a single, self-contained statement. You can also use Microsoft® SQL Server®
2016 to nest one query within another—in other words, to form subqueries. In a subquery, the results of
the inner query (subquery) are returned to the outer query. This can provide a great deal of flexibility for
your query logic. In this module, you will learn to write several types of subqueries.

Objectives
After completing this module, you will be able to:

 Describe the uses for queries that are nested within other queries.

 Write self-contained subqueries that return scalar or multi-valued results.

 Write correlated subqueries that return scalar or multi-valued results.

 Use the EXISTS predicate to efficiently check for the existence of rows in a subquery.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-2 Using Subqueries

Lesson 1
Writing Self-Contained Subqueries

A subquery is a SELECT statement nested within another query. Being able to nest one query within
another will enhance your ability to create effective queries in T-SQL. In this lesson, you will learn how to
write self-contained queries, which are evaluated once, and provide their results to the outer query. You
will learn how to write scalar subqueries, which return a single value, and multi-valued subqueries, which,
as their name suggests, can return a list of values to the outer query.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe where subqueries may be used in a SELECT statement.

 Write queries that use scalar subqueries in the WHERE clause of a SELECT statement.

 Write queries that use multi-valued subqueries in the WHERE clause of a SELECT statement.

Working with Subqueries

A subquery is a SELECT statement nested, or embedded,
within another query. The nested query, which is the
subquery, is the inner query. The query containing the
nested query is the outer query.

The purpose of a subquery is to return results to the
outer query. The form of the results will determine
whether the subquery is a scalar or multi-valued
subquery:

 Scalar subqueries, like scalar functions, return a
single value. Outer queries need to be written to
process a single result.

 Multi-valued subqueries return a result much like a single-column table. Outer queries need to be
written to handle multiple possible results.

In addition to the choice between scalar and multi-valued subqueries, you may choose to write self-
contained subqueries or others that are correlated with the outer query:

 Self-contained subqueries can be written as stand-alone queries, with no dependencies on the outer
query. A self-contained subquery is processed once, when the outer query runs and passes its results
to that outer query.

 Correlated subqueries reference one or more columns from the outer query and therefore depend on
it. Correlated subqueries cannot be run separately from the outer query.

 Note: You will learn about correlated subqueries later in this module.

For additional reading about subqueries, see the SQL Server 2016 Technical Documentation:

Subquery Fundamentals

http://aka.ms/f6uu08

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-3

Writing Scalar Subqueries

A scalar subquery is an inner SELECT statement
within an outer query, written to return a single
value. Scalar subqueries may be used anywhere in
an outer T-SQL statement where a single-valued
expression is permitted—such as in a SELECT
clause, a WHERE clause, a HAVING clause, or even
a FROM clause.

To write a scalar subquery, consider the following
guidelines:

 To denote a query as a subquery, enclose it in
parentheses.

 Multiple levels of subqueries are supported in SQL Server. In this lesson, we will only consider two-
level queries (one inner query within one outer query), but up to 32 levels are supported.

 If the subquery returns an empty set, the result of the subquery is converted and returned as a NULL.
Ensure your outer query can gracefully handle a NULL, in addition to other expected results.

To build the example query shown on the slide above, you may wish to start by writing and testing the
inner query alone:

Inner Query

USE TSQL;
GO
SELECT MAX(orderid) AS lastorder
FROM Sales.Orders;

This returns:

lastorder

11077

You will then write the outer query, using the value returned by the inner query.

In this example, you will return details about the most recent order:

Outer and Inner Query

SELECT orderid, productid, unitprice, qty
FROM Sales.OrderDetails
WHERE orderid =
 (SELECT MAX(orderid) AS lastorder
 FROM Sales.Orders);

This returns (partial result):

orderid productid unitprice qty
----------- ----------- --------------------- ------
11077 2 19.00 24
11077 3 10.00 4
11077 4 22.00 1
11077 6 25.00 1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-4 Using Subqueries

Test the logic of your subquery to ensure it will only return a single value. In the query above, because the
outer query used an = operator in the predicate of the WHERE clause, and the subquery returned a single
value, the query ran correctly. If an outer query is written to expect a single value, such as by using simple
equality operators (=, <, >, and <>, for example), and the inner query returns more than one result, an
error will be returned:

Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the subquery follows =,
!=, <, <= , >, >= or when the subquery is used as an expression.

In the case of the Sales.Orders table, orderid is known to be a unique column, enforced in the structure of
the table by a PRIMARY KEY constraint.

See PRIMARY KEY Constraints in the SQL Server 2016 Technical Documentation:

PRIMARY KEY Constraints

http://aka.ms/acq0rx

Writing Multi-Valued Subqueries

As its name suggests, a multi-valued subquery may
return more than one result, in the form of a

single-column set.

A multi-valued subquery is well suited to return results to
the IN predicate, as in the following example:

Multi-Valued Subquery

SELECT custid, orderid
FROM Sales.orders
WHERE custid IN (
 SELECT custid
 FROM Sales.Customers
 WHERE country =N'Mexico');

In this example, if you were to execute only the inner query, you would return the following list of custids
for customers in the country of Mexico:

custid

2
3
13
58
80

SQL Server will pass those results to the outer query, logically rewritten as follows:

Logical Structure of Outer Query

SELECT custid, orderid
FROM Sales.orders
WHERE custid IN (2,3,13,58,80);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-5

The outer query will continue to process the SELECT statement, with the following partial results:

custid orderid
------ -----------
2 10308
2 10625
3 10365
3 10507
3 10856
13 10259
58 10322
58 10354

As you continue to learn about writing T-SQL queries, you may find scenarios in which multi-valued
subqueries are written as SELECT statements using JOINs.

For example, the previous subquery might be rewritten as follows, with the same results and comparable
performance:

Subquery Rewritten As a Join

SELECT c.custid, o.orderid
FROM Sales.Customers AS c JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.country = N'Mexico‘;

 Note: In some cases, the database engine will interpret a subquery as a JOIN and execute it
accordingly. As you learn more about SQL Server internals, such as execution plans, you may be
able to see your queries interpreted this way. For more information about execution plans and
query performance, see Microsoft Course 20472-3: Performance Tuning and Optimizing Microsoft
SQL Server Databases.

Demonstration: Writing Self-Contained Subqueries

In this demonstration, you will see how to:

 Write a nested subquery.

Demonstration Steps
Write a Nested Subquery

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod10 folder, right-click Setup.cmd, and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and wait for the script to finish.

4. At the command prompt, press any key.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows® authentication.

6. On the File menu, point to Open, and then click File.

7. In the Open File dialog box, navigate to the D:\Demofiles\Mod10\Demo folder, and then double-
click Demo.ssmssln.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-6 Using Subqueries

8. In Solution Explorer, expand Queries, and then double-click 11 - Demonstration A.sql.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute. Note the error message.

13. Select the code under the comment Step 5, and then click Execute.

14. Select the code under the comment Step 6, and then click Execute.

15. Keep SQL Server Management Studio open for the next demonstration.

Question: You are troubleshooting a query. The outer query contains an inner query in its
WHERE clause. The first inner query also contains a second inner query in its WHERE clause.
Both inner queries are self-contained. The complete query returns an error. How should you
approach this task?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-7

Lesson 2
Writing Correlated Subqueries

Earlier in this module, you learned how to write self-contained subqueries, in which the inner query is
independent of the outer query, executes once, and returns its results to the outer query. Microsoft SQL
Server also supports correlated subqueries, in which the inner query receives input from the outer query
and conceptually executes once per row in it. In this lesson, you will learn how to write correlated
subqueries, in addition to rewriting some types of correlated subqueries as JOINs for performance or
logical efficiency.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how correlated subqueries are processed.

 Write queries that use correlated subqueries in a SELECT statement.

 Rewrite some correlated subqueries as JOINs.

Working with Correlated Subqueries

Like self-contained subqueries, correlated subqueries are
SELECT statements nested within an outer query. They
may also be written as scalar or multi-valued subqueries.
They are typically used to pass a value from the outer
query to the inner query, to be used as a parameter there.

However, unlike self-contained subqueries, correlated
subqueries depend on the outer query to pass values into
the subquery as a parameter. This leads to some special
considerations when planning their use:

 Correlated subqueries cannot be executed separately
from the outer query. This complicates testing and debugging.

 Unlike self-contained subqueries which are processed once, correlated subqueries will run multiple
times. Logically, the outer query runs first, and for each row returned, the inner query is processed.

The following example uses a correlated subquery to return the orders with the latest order date for each
employee. The subquery accepts an input value from the outer query, uses the input in its WHERE clause,
and returns a scalar result to the outer query. Line numbers have been added for use in the subsequent
explanation. They do not indicate the order in which the steps are logically processed.

The following example uses a correlated subquery to return the orders with the latest order date for each
employee:

Correlated Subquery Example

1. SELECT orderid, empid, orderdate
2. FROM Sales.Orders AS O1
3. WHERE orderdate =
4. (SELECT MAX(orderdate)
5. FROM Sales.Orders AS O2
6. WHERE O2.empid = O1.empid)
7. ORDER BY empid, orderdate;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-8 Using Subqueries

Line No. Statement Description

1 SELECT orderid, empid, orderdate Columns returned by the outer query.

2 FROM Sales.Orders AS O1 Source table for the outer query. Note the alias.

3 WHERE orderdate = Predicate used to evaluate the outer rows
against the result of the inner query.

4 (SELECT MAX(orderdate) Column returned by the inner query. Aggregate
function returns a scalar value.

5 FROM Sales.Orders AS O2 Source table for the inner query. Note the alias.

6 WHERE O2.empid = O1.empid) Correlation of empid from the outer query to
empid from the inner query. This value will be
supplied for each row in the outer query.

7 ORDER BY empid, orderdate; Sorts the results of the outer query.

The query returns the following results. Note that some employees appear more than once, because they
are associated with multiple orders on the latest orderdate:

orderid empid orderdate
----- ----- -----------------------
11077 1 2008-05-06 00:00:00.000
11073 2 2008-05-05 00:00:00.000
11070 2 2008-05-05 00:00:00.000
11063 3 2008-04-30 00:00:00.000
11076 4 2008-05-06 00:00:00.000
11043 5 2008-04-22 00:00:00.000
11045 6 2008-04-23 00:00:00.000
11074 7 2008-05-06 00:00:00.000
11075 8 2008-05-06 00:00:00.000
11058 9 2008-04-29 00:00:00.000

Question: Why can't a correlated subquery be executed separately from the outer query?

Writing Correlated Subqueries

To write correlated subqueries, consider the
following guidelines:

 Write the outer query to accept the
appropriate return result from the inner
query. If the inner query will be scalar, you can
use equality and comparison operators, such
as =, <, >, and <>, in the WHERE clause. If the
inner query might return multiple values, use
an IN predicate. Plan to handle NULL results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-9

 Identify the column from the outer query that will be passed to the correlated subquery. Declare an
alias for the table that is the source of the column in the outer query.

 Identify the column from the inner table that will be compared to the column from the outer table.
Create an alias for the source table, as you did for the outer query.

 Write the inner query to retrieve values from its source, based on the input value from the outer
query. For example, use the outer column in the WHERE clause of the inner query.

The correlation between the inner and outer queries occurs when the outer value is passed to the inner
query for comparison. It’s this correlation that gives the subquery its name.

For additional reading about correlated subqueries, see the SQL Server 2016 Technical Documentation:

Correlated Subqueries

http://aka.ms/hoxorm

Demonstration: Writing Correlated Subqueries

In this demonstration, you will see how to:

 Write a correlated subquery.

Demonstration Steps
Write a Correlated Subquery

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

Which of the following statements about correlated subqueries is correct?

Select the correct answer.

 To troubleshoot a correlated subquery, execute the inner query first on its
own, before placing it into the outer query.

 In a correlated subquery, the inner query is run only once, regardless of the
number of rows the outer query returns.

 In a correlated subquery, the inner query uses data returned by the outer
query.

 In a correlated subquery, the inner query is executed first, the outer query
second.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-10 Using Subqueries

Lesson 3
Using the EXISTS Predicate with Subqueries

In addition to retrieving values from a subquery, SQL Server provides a mechanism for checking whether
any results would be returned from a query. The EXISTS predicate evaluates whether rows exist, but rather
than return them, it returns TRUE or FALSE. This is a useful technique for validating data without incurring
the overhead of retrieving and counting the results.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how the EXISTS predicate combines with a subquery to perform an existence test.

 Write queries that use EXISTS predicates in a WHERE clause to test for the existence of qualifying
rows.

Working with EXISTS

When a subquery is invoked by an outer query
using the EXISTS predicate, SQL Server handles the
results of the subquery differently to how it does
elsewhere in this module. Rather than retrieve a
scalar value or a multi-valued list from the
subquery, EXISTS simply checks to see if there are
any rows in the results.

Conceptually, an EXISTS predicate is equivalent to
retrieving the results, counting the rows returned,
and comparing the count to zero. Compare the
following queries, which will return details about
employees who are associated with orders:

The first query uses COUNT in a subquery:

Using COUNT in a Subquery

SELECT empid, lastname
FROM HR.Employees AS e
WHERE (SELECT COUNT(*)
 FROM Sales.Orders AS O
 WHERE O.empid = e.empid)>0;

The second query, which returns the same results, uses EXISTS:

Using EXISTS in a Subquery

SELECT empid, lastname
FROM HR.Employees AS e
WHERE EXISTS(SELECT *
 FROM Sales.Orders AS O
 WHERE O.empid = e.empid);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-11

In the first example, the subquery must count every occurrence of each empid found in the Sales.Orders
table, and compare the count results to zero, simply to indicate that the employee has associated orders.

In the second query, EXISTS returns TRUE for an empid as soon as one has been found in the Sales.Orders
table—a complete accounting of each occurrence is unnecessary.

 Note: From the perspective of logical processing, the two query forms are equivalent. From
a performance perspective, the database engine may treat the queries differently as it optimizes
them for execution. Consider testing each one for your own usage.

Another useful application of EXISTS is negating it with NOT, as in the following example, which will
return any customer who has never placed an order:

NOT EXISTS Example

SELECT custid, companyname
FROM Sales.Customers AS c
WHERE NOT EXISTS (
 SELECT *
 FROM Sales.Orders AS o
 WHERE c.custid=o.custid);

Once again, SQL Server will not have to return data about the related orders for customers who have
placed orders. If a customer ID is found in the Sales.Orders table, NOT EXISTS evaluates to FALSE and the
evaluation quickly completes.

Writing Queries Using EXISTS with Subqueries

To write queries that use EXISTS with subqueries,
consider the following guidelines:

 The keyword EXISTS directly follows WHERE.
No column name (or other expression) needs
to precede it, unless NOT is also used.

 Within the subquery following EXISTS, the
SELECT list only needs to contain (*). No rows
are returned by the subquery, so no columns
need to be specified.

See Subqueries with EXISTS in the SQL Server 2016
Technical Documentation:

Subqueries with EXISTS

http://aka.ms/q812le

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-12 Using Subqueries

Demonstration: Writing Subqueries Using EXISTS

In this demonstration, you will see how to:

 Write queries using EXISTS and NOT EXISTS.

Demonstration Steps
Write Queries Using EXISTS and NOT EXISTS

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4a, and then click Execute.

6. Select the code under the comment Step 4b, and then click Execute.

7. Close SQL Server Management Studio without saving any files.

Question: The Human Resources database has recently been extended to record the skills
possessed by employees. Employees have added their skills to the database by using a web-
based user interface. You want to find employees who have not yet added their skills. You
have the following query:

SELECT e.EmployeeID, e.FirstName

FROM HumanResources.Employees AS e

WHERE NOT EXISTS (

 SELECT s.EmployeeID, s.SkillName, s.SkillCategory

 FROM HumanResources.Skills AS s

 WHERE e.EmployeeID = s.EmployeeID);

How can you improve the query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-13

Lab: Using Subqueries
Scenario
As a business analyst for Adventure Works, you are writing reports using corporate databases stored in
SQL Server. You have been handed a set of business requirements for data and will write T-SQL queries to
retrieve the specified data from the databases. Due to the complexity of some of the requests, you will
need to embed subqueries into your queries to return results in a single query.

Objectives
After completing this lab, you will be able to:

 Write queries that use subqueries.

 Write queries that use scalar and multiresult set subqueries.

 Write queries that use correlated subqueries and the EXISTS predicate.

Estimated Time: 60 minutes

Virtual machine: 20761B-MIA-SQL

User name: AdventureWorks\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Self-Contained Subqueries

Scenario
The sales department needs some advanced reports to analyze sales orders. You will write different
SELECT statements that use self-contained subqueries.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve the Last Order Date

3. Write a SELECT Statement to Retrieve All Orders Placed on the Last Order Date

4. Observe the T-SQL Statement Provided by the IT Department

5. Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of the Total Sales Amount

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab10\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve the Last Order Date
1. Open the project file D:\Labfiles\Lab10\Starter\Project\Project.ssmssln and the T-SQL script 51 -

Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the maximum order date from the table Sales.Orders.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-14 Using Subqueries

 Task 3: Write a SELECT Statement to Retrieve All Orders Placed on the Last Order
Date
1. Write a SELECT statement to return the orderid, orderdate, empid, and custid columns from the

Sales.Orders table. Filter the results to include only orders where the date order equals the last order
date. (Hint: use the query in task 1 as a self-contained subquery.)

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Observe the T-SQL Statement Provided by the IT Department
1. The IT department has written a T-SQL statement that retrieves the orders for all customers whose

contact name starts with a letter I:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid =
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'I%'
);

2. Execute the query and observe the result.

3. Modify the query to filter customers whose contact name starts with a letter B.

4. Execute the query. What happened? What is the error message? Why did the query fail?

5. Apply the needed changes to the T-SQL statement so that it will run without an error.

6. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\54 - Lab Exercise 1 - Task 3 Result.txt.

 Task 5: Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of
the Total Sales Amount
1. Write a SELECT statement to retrieve the orderid column from the Sales.Orders table and the

following calculated columns:

 totalsalesamount (based on the qty and unitprice columns in the Sales.OrderDetails table).

 salespctoftotal (percentage of the total sales amount for each order divided by the total sales
amount for all orders in a specific period).

2. Filter the results to include only orders placed in May 2008.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\55 - Lab Exercise 1 - Task 4 Result.txt.

Results: After this exercise, you should be able to use self-contained subqueries in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-15

Exercise 2: Writing Queries That Use Scalar and Multiresult Subqueries

Scenario
The marketing department would like to prepare materials for different groups of products and
customers, based on historic sales information. You have to prepare different SELECT statements that use
a subquery in the WHERE clause.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve Specific Products

2. Write a SELECT Statement to Retrieve Those Customers Without Orders

3. Add a Row and Rerun the Query That Retrieves Those Customers Without Orders

 Task 1: Write a SELECT Statement to Retrieve Specific Products
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the productid and productname columns from the
Production.Products table. Filter the results to include only products that were sold in high
quantities (more than 100) for a specific order line.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\62 - Lab Exercise 2 -Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve Those Customers Without Orders
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Filter the results to include only those customers who do not have any placed
orders.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. Remember
the number of rows in the results.

 Task 3: Add a Row and Rerun the Query That Retrieves Those Customers Without
Orders
1. The IT department has written a T-SQL statement that inserts an additional row in the Sales.Orders

table. This row has a NULL in the custid column:

INSERT INTO Sales.Orders (
custid, empid, orderdate, requireddate, shippeddate, shipperid, freight,
shipname, shipaddress, shipcity, shipregion, shippostalcode, shipcountry)
VALUES
(NULL, 1, '20111231', '20111231', '20111231', 1, 0,
'ShipOne', 'ShipAddress', 'ShipCity', 'RA', '1000', 'USA')

2. Execute this query exactly as written inside a query window.

3. Copy the T-SQL statement you wrote in task 2 and execute it.

4. Observe the result. How many rows are in the result? Why?

5. Modify the T-SQL statement to retrieve the same number of rows as in task 2. (Hint: you have to
remove the rows with an unknown value in the custid column.)

6. Execute the modified statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

Results: After this exercise, you should know how to use multiresult subqueries in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-16 Using Subqueries

Exercise 3: Writing Queries That Use Correlated Subqueries and an EXISTS
Predicate

Scenario
The sales department would like to have some additional reports to display different analyses of existing
customers. Because the requests are complex, you will need to use correlated subqueries.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Last Order Date for Each Customer

2. Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those Customers Without Orders

3. Write a SELECT Statement to Retrieve Customers Who Bought Expensive Products

4. Write a SELECT Statement to Display the Total Sales Amount and the Running Total Sales Amount for
Each Order Year

5. Clean the Sales.Customers Table

 Task 1: Write a SELECT Statement to Retrieve the Last Order Date for Each Customer
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Make sure you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table. Add a calculated column named lastorderdate that contains the last order
date from the Sales.Orders table for each customer. (Hint: you have to use a correlated subquery.)

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those
Customers Without Orders
1. Write a SELECT statement to retrieve all customers that do not have any orders in the Sales.Orders

table, similar to the request in exercise 2, task 3. However, this time use the EXISTS predicate to filter
the results to include only those customers without an order. Also, you do not need to explicitly check
that the custid column in the Sales.Orders table is not NULL.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

3. Why didn’t you need to check for a NULL?

 Task 3: Write a SELECT Statement to Retrieve Customers Who Bought Expensive
Products
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Filter the results to include only customers who placed an order on or after
April 1, 2008, and ordered a product with a price higher than $100.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-17

 Task 4: Write a SELECT Statement to Display the Total Sales Amount and the Running
Total Sales Amount for Each Order Year
1. Running aggregates accumulate values over time. Write a SELECT statement to retrieve the following

information for each year:

 The order year.

 The total sales amount.

 The running total sales amount over the years. That is, for each year, return the sum of sales
amount up to that year. So, for example, for the earliest year (2006), return the total sales
amount; for the next year (2007), return the sum of the total sales amount for the previous year
and 2007.

2. The SELECT statement should have three calculated columns:

 orderyear, representing the order year. This column should be based on the orderyear column
from the Sales.Orders table.

 totalsales, representing the total sales amount for each year. This column should be based on
the qty and unitprice columns from the Sales.OrderDetails table.

 runsales, representing the running sales amount. This column should use a correlated subquery.

3. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab10\Solution\75 - Lab Exercise 3 - Task 4 Result.txt.

 Task 5: Clean the Sales.Customers Table
1. Delete the row added in exercise 2 using the provided SQL statement:

DELETE Sales.Orders
WHERE custid IS NULL;

2. Execute this query exactly as written inside a query window.

Results: After this exercise, you should have an understanding of how to use a correlated subquery in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-18 Using Subqueries

Module Review and Takeaways
In this module, you have learned how to:

 Describe the uses for queries that are nested within other queries.

 Write self-contained subqueries that return scalar or multi-valued results.

 Write correlated subqueries that return scalar or multi-valued results.

 Use the EXISTS predicate to efficiently check for the existence of rows in a subquery.

Review Question(s)
Question: Can a correlated subquery return a multi-valued set?

Question: What type of subquery may be rewritten as a JOIN?

Question: Which columns should appear in the SELECT list of a subquery following the
EXISTS predicate?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-1

Module 11
Using Table Expressions

Contents:
Module Overview 11-1

Lesson 1: Using Views 11-2

Lesson 2: Using Inline TVFs 11-5

Lesson 3: Using Derived Tables 11-9

Lesson 4: Using CTEs 11-15

Lab: Using Table Expressions 11-18

Module Review and Takeaways 11-25

Module Overview
Previously in this course, you learned about using subqueries as an expression that returned results to an
outer calling query. Like subqueries, table expressions are query expressions, but table expressions extend
this idea by allowing you to name them and work with the results as you would with data in any valid
relational table. Microsoft® SQL Server® 2016 supports four types of table expressions: derived tables,
common table expressions (CTEs), views, and inline table-valued functions (TVFs). In this module, you will
learn to work with these forms of table expressions and how to use them to help create a modular
approach to writing queries.

After completing this module, you will be able to:

 Create simple views and write queries against them.

 Create simple inline TVFs and write queries against them.

 Write queries that use derived tables.

 Write queries that use CTEs.

 Note: Some of the examples used in this module have been adapted from samples
published in Microsoft SQL Server 2008 T-SQL Fundamentals (Microsoft Press 2009).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-2 Using Table Expressions

Lesson 1
Using Views

The lifespans of some table expressions are limited to the query in which they are defined and invoked.
Views and TVFs, however, can be persistently stored in a database and reused. A view is a table expression
whose definition is stored in a SQL Server database. Like derived tables and CTEs, views are defined with
SELECT statements. This provides not only the benefits of modularity and encapsulation possible with
derived table and CTEs, but also adds reusability, in addition to extra security beyond that provided with
query-scoped table expressions.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that return results from views.

 Create simple views.

Writing Queries That Return Results from Views

A view is a named table expression whose
definition is stored as metadata in a SQL Server
database. Views can be used as a source for
queries in much the same way as tables
themselves. However, views do not persistently
store data; the definition of the view is unpacked
at runtime and the source objects are queried.

 Note: In an indexed view, data is
materialized in the view. Indexed views are beyond
the scope of this course.

To write a query that uses a view as its data source, use the two-part view name wherever the table source
would be used, such as in a FROM or a JOIN clause:

Querying a View Syntax

SELECT <select_list>
FROM <view_name>
ORDER BY <sort_list>;

Note that an ORDER BY clause is used in this sample syntax to emphasize the point that, as a table
expression, there is no sort order included in the definition of a view. This will be discussed later in this
lesson.

The following example uses a sample view whose definition is stored in the TSQL database. Note that
there is no way to determine that the FROM clause references a view and not a table:

Querying a View Example

SELECT custid, ordermonth, qty
FROM Sales.CustOrders;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-3

The partial results are indistinguishable from any other table-based query:

custid ordermonth qty

7 2006-07-01 00:00:00.000 50

13 2006-07-01 00:00:00.000 11

14 2006-07-01 00:00:00.000 57

The apparent similarity between a table and a view provides an important benefit—an application can be
written to use views instead of the underlying tables, shielding the application from changes to the tables.
Providing the view continues to present the same structure to the calling application, the application will
receive consistent results. Views can be considered an application programming interface (API) to a
database for purposes of retrieving data.

Administrators can also use views as a security layer, granting users permissions to select from a view
without providing permissions on the underlying source tables.

 Additional Reading: For more information on database security, go to course 20764B:
Administering a SQL Database Infrastructure.

Creating Simple Views

To use a view in your queries, it must be created
by a database developer or administrator with
appropriate permission in the database. While
coverage of database security is beyond the scope
of this course, you will have permission to create
views in the lab database.

To store a view definition, use the CREATE VIEW T-
SQL statement to name and store a single SELECT
statement. Note that the ORDER BY clause is not
permitted in a view definition unless the view uses
a TOP, OFFSET/FETCH, or FOR XML element.

This is the syntax of the CREATE VIEW statement:

CREATE VIEW Syntax

CREATE VIEW <schema_name.view_name> [<column_alias_list>]
[WITH <view_options>]
AS select_statement;

 Note: This lesson covers the basics of creating views for the purposes of discussion about
querying them only. For more information on views and view options, go to course 20762B:
Developing Microsoft SQL Server Databases.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-4 Using Table Expressions

The following example creates the view named Sales.CustOrders that exists in the TSQL sample database.
Most of the code within the example makes up the definition of the SELECT statement itself:

CREATE VIEW Example

CREATE VIEW Sales.CustOrders
AS
SELECT
 O.custid,
 DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0) AS ordermonth,
 SUM(OD.qty) AS qty
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON OD.orderid = O.orderid
GROUP BY custid, DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0);

You can query system metadata by querying system catalog views such as sys.views, which you will learn
about in a later module.

To query a view, refer to it in the FROM clause of a SELECT statement, as you would refer to a table:

Querying a View Example

SELECT custid, ordermonth, qty
FROM Sales.CustOrders;

Demonstration: Using Views

In this demonstration, you will see how to:

 Create views.

Demonstration Steps
Create Views

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod11\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, press Enter, and then wait for the script to finish.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod11\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Question: Your DBAs want to grant access to Sales users on the Customers table in the Sales
database. However, they also need to prevent Sales users from reading values in the
Customers.Relationship column. How can they set up this access?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-5

Lesson 2
Using Inline TVFs

An inline TVF is a form of table expression with several properties in common with views. Like a view, the
definition of a TVF is stored as a persistent object in a database. Also like a view, an inline TVF
encapsulates a single SELECT statement, returning a virtual table to the calling query. A primary distinction
between a view and an inline TVF is that the latter can accept input parameters and refer to them in the
embedded SELECT statement.

In this lesson, you will learn how to create basic inline TVFs and write queries that return results from
them.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the structure and usage of inline TVFs.

 Use the CREATE FUNCTION statement to create simple inline TVFs.

 Write queries that return results from inline TVFs.

Writing Queries That Use Inline TVFs

Inline TVFs are named table expressions whose
definitions are stored persistently in a database
that can be queried in much the same way as a
view. This enables reuse and centralized
management of code in a way that is not possible
for derived tables and CTEs as query-scoped table
expressions.

 Note: SQL Server supports several types of
user-defined functions. In addition to inline TVFs,
users can create scalar functions, multi-statement
TVFs, and functions written in the .NET Common
Language Runtime (CLR). For more information on these functions, go to course 20762B:
Developing Microsoft SQL Server 2016 Databases.

One of the key distinctions between views and inline TVFs is that the latter can accept input parameters.
Therefore, you may think of inline TVFs conceptually as parameterized views and choose to use them in
place of views when flexibility of input is preferred.

Additional reading can be found in the SQL Server 2016 Technical Documentation:

CREATE FUNCTION (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402772

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-6 Using Table Expressions

Creating Simple Inline TVFs

To use inline TVFs in your queries, they must be
created by a database developer or administrator
with appropriate permission in the database.
While coverage of database security is beyond the
scope of this course, you will have permission to
create TVFs in the lab database.

To store an inline TVF view definition:

 Use the CREATE FUNCTION T-SQL statement
to name and store a single SELECT statement
with optional parameters.

 Use RETURNS TABLE to identify this function
as a TVF.

 Enclose the SELECT statement inside parentheses following the RETURN keyword to make this an
inline function.

Use the following syntax:

CREATE FUNCTION Syntax for Inline Table-Valued Functions

CREATE FUNCTION <schema.name>
(@<parameter_name> AS <data_type>, ...)
RETURNS TABLE
AS
RETURN (<SELECT_expression>);

The following example creates an inline TVF, which takes an input parameter to control how many rows
are returned by the TOP operator:

Inline Table-Valued Function Example

CREATE FUNCTION Production.TopNProducts
(@t AS INT)
RETURNS TABLE
AS
RETURN
 (SELECT TOP (@t) productid, productname, unitprice
 FROM Production.Products
 ORDER BY unitprice DESC);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-7

Retrieving from Inline TVFs

After creating an inline TVF, you can invoke it by
selecting from it, as you would a view. If there is an
argument, you need to enclose it in parentheses.
Multiple arguments need to be separated by commas.

Here is an example of how to query an inline TVF:

Querying an Inline TVF

SELECT * FROM Production.TopNProducts(3)

The results:

productid productname unitprice

38 Product QDOMO 263.50

29 Product VJXYN 123.79

9 Product AOZBW 97.00

 (3 row(s) affected)

 Note: You use a two-part name when calling a user-defined function.

Demonstration: Inline TVFs

In this demonstration, you will see how to:

 Create inline TVFs.

Demonstration Steps
Create Inline TVFs

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-8 Using Table Expressions

Check Your Knowledge

Question

From the following statements, select the one that is true of TVFs but not true of
Views.

Select the correct answer.

 Stored persistently in the database.

 Can accept input parameters.

 Can be referred to in a FROM clause, like a table.

 Does not store data in the database but queries the database whenever it is
called.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-9

Lesson 3
Using Derived Tables

In this lesson, you will learn how to write queries that create derived tables in the FROM clause of an outer
query. You will also learn how to return results from the table expression defined in the derived table.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that create and retrieve results from derived tables.

 Describe how to provide aliases for column names in derived tables.

 Pass arguments to derived tables.

 Describe nesting and reuse behavior in derived tables.

Writing Queries with Derived Tables

Earlier in this course, you learned about subqueries,
which are queries nested within other SELECT
statements. Like subqueries, you create derived tables in
the FROM clause of an outer SELECT statement. Unlike
subqueries, you write derived tables using a named
expression that is logically equivalent to a table and may
be referenced as a table elsewhere in the outer query.
Derived tables allow you to write T-SQL statements that
are more modular, helping you break down complex
queries into more manageable parts. Using derived
tables in your queries can also provide workarounds for
some of the restrictions imposed by the logical order of query processing, such as the use of column
aliases.

To create a derived table, write the inner query between parentheses, followed by an AS clause and a
name for the derived table:

Derived Table Syntax

SELECT <outer query column list>
FROM (SELECT <inner query column list>
 FROM <table source>) AS <derived table alias>

The following example uses a derived table to retrieve information about orders placed per year by
distinct customers. The inner query builds a set of orders and places it into the derived table’s derived
year. The outer query operates on the derived table and summarizes the results.

The following example uses a derived table to retrieve information about orders placed by distinct
customers per year:

Derived Table Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS derived_year
GROUP BY orderyear;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-10 Using Table Expressions

The results:

orderyear cust_count

2006 67

2007 86

2008 81

 (3 row(s) affected)

When writing queries that use derived tables, consider the following:

 Derived tables are not stored in the database. Therefore, no special security privileges are required to
write queries using derived tables, other than the rights to select from the source objects.

 A derived table is created at the time of execution of the outer query and goes out of scope when the
outer query ends.

 Derived tables do not necessarily have an impact on performance, compared to the same query
expressed differently. When the query is processed, the statement is unpacked and evaluated against
the underlying database objects.

Guidelines for Derived Tables

When writing queries that use derived tables, keep the
following guidelines in mind:

 The nested SELECT statement that defines the
derived table must have an alias assigned to it. The
outer query will use the alias in its SELECT statement
in much the same way you refer to aliased tables
joined in a FROM clause.

 All columns referenced in the derived table's SELECT
clause should be assigned aliases, a best practice
that is not always required in T-SQL. Each alias must
be unique within the expression. The column aliases may be declared inline with the columns or
externally to the clause. You will see examples of this in the next topic.

 The SELECT statement that defines the derived table expression may not use an ORDER BY clause,
unless it also includes a TOP operator, an OFFSET/FETCH clause, or a FOR XML clause. As a result,
there is no sort order provided by the derived table. You sort the results in the outer query.

 The SELECT statement that defines the derived table may be written to accept arguments in the form
of local variables. If the SELECT statement is embedded in a stored procedure, the arguments may be
written as parameters for the procedure. You will see examples of this later in the module.

 Derived table expressions that are nested within an outer query can contain other derived table
expressions. Nesting is permitted, but it is not recommended due to increased complexity and
reduced readability.

 A derived table may not be referred to multiple times within an outer query. If you need to
manipulate the same results, you will need to define the derived table expression every time, such as
on each side of a JOIN operator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-11

 Note: You will see examples of multiple usage of the same derived table expression in a
query in the demonstration for this lesson.

Using Aliases for Column Names in
Derived Tables

To create aliases, you can use one of two methods—
inline or external.

To define aliases inline or with the column specification,
use the following syntax. Note that aliases are not
required by T-SQL, but are a best practice:

Alias Syntax

SELECT <outer query column list>
FROM (SELECT <col1> AS <alias>, <col2> AS <alias>...
 FROM <table_source>);

The following example declares aliases inline for the results of the YEAR function and the custid column:

Alias Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS derived_year
GROUP BY orderyear;

A partial result for the inner query displays the following:

orderyear custid

2006 85

2006 79

2006 34

The inner results are passed to the outer query, which operates on the derived table's orderyear and
custid columns:

orderyear cust_count

2006 67

2007 86

2008 81

To use externally declared aliases with derived tables, use the following syntax:

Declared Aliases with Derived Tables Syntax

SELECT <outer query column list>
FROM (SELECT <col1>, <col2>..
 FROM <table_source>) AS <derived_table_alias>(<col1_alias>, <col2_alias>);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-12 Using Table Expressions

The following example uses external alias definitions for orderyear and custid:

Declared Aliases with Derived Tables Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM (SELECT YEAR(orderdate), custid
 FROM Sales.Orders) AS derived_year(orderyear, custid)
GROUP BY orderyear;

 Note: When using external aliases, if the inner query is executed separately, the aliases will
not be returned to the outer query. For ease of testing and readability, it is recommended that
you use inline rather than external aliases.

Passing Arguments to Derived Tables

Derived tables in SQL Server 2016 can accept
arguments passed in from a calling routine, such
as a T-SQL batch, function, or a stored procedure.
Derived tables can be written with local variables
serving as placeholders in their code. At runtime,
the placeholders can be replaced with values
supplied in the batch or with values passed as
parameters to the stored procedure that invoked
the query. This will allow your code to be reused
more flexibly than rewriting the same query with
different values each time.

 Note: The use of parameters in functions
and stored procedures will be covered later in this course. This lesson focuses on writing table
expressions that can accept arguments.

For example, the following batch declares a local variable (marked with the @ symbol) for the employee
ID, and then uses the ability of SQL Server 2008 and later to assign a value to the variable in the same
statement. The query accepts the @emp_id variable and uses it in the derived table expression:

Passing Arguments to Derived Tables

DECLARE @emp_id INT = 9; --declare and assign the variable
SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM (
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
 WHERE empid=@emp_id --use the variable to pass a value to the derived table query
) AS derived_year
GROUP BY orderyear;
GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-13

The results:

orderyear cust_count

2006 5

2007 16

2008 16

 (3 row(s) affected)

 Note: You will learn more about declaring variables, executing T-SQL code in batches, and
working with stored procedures later in this class.

Nesting and Reusing Derived Tables

Since a derived table is itself a complete query expression,
that query can refer to a derived table expression. This
creates a nesting scenario, which while possible, is not
recommended for reasons of code maintenance and
readability.

For example, the following query nests one derived table
within another:

Nested Derived Tables

SELECT orderyear, cust_count
FROM (
 SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
 FROM (
 SELECT YEAR(orderdate) AS orderyear ,custid
 FROM Sales.Orders) AS derived_table_1
 GROUP BY orderyear) AS derived_table_2
WHERE cust_count > 80;

Logically, the innermost query is processed first, returning these partial results as derived_table_1:

orderyear custid

2006 85

2006 79

2006 34

Next, the middle query runs, grouping and aggregating the results into derived_table_2:

orderyear cust_count

2006 67

2007 86

2008 81

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-14 Using Table Expressions

Finally, the outer query runs, filtering the output:

orderyear cust_count

2007 86

2008 81

As you can see, while is possible to nest derived tables, it does add complexity.

While nesting derived tables is possible, references to the same derived table from multiple clauses of an
outer query can be challenging. Since the table expression is defined in the FROM clause, subsequent
phases of the query can see it, but it cannot be referenced elsewhere in the same FROM clause.

For example, a derived table defined in a FROM clause may be referenced in a WHERE clause, but not in a
JOIN in the same FROM clause that defines it. The derived table must be defined separately, and multiple
copies of the code maintained. For an alternative approach that allows reuse without maintaining
separate copies of the derived table definition, see the CTE discussion later in this module.

Question: How could you rewrite the previous example to eliminate one level of nesting?

Demonstration: Using Derived Tables

In this demonstration, you will see how to:

 Write queries that create derived tables.

Demonstration Steps
Write Queries that Create Derived Tables

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Keep SQL Server Management Studio open for the next demonstration.

Question: You are troubleshooting the following query, which returns an error:

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM (

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid = 354

 ORDER BY YEAR(orderdate)

) AS derived_year

GROUP BY orderyear;

How can you resolve the error?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-15

Lesson 4
Using CTEs

Another form of table expression provided by SQL Server 2016 is the CTE. Similar in some ways to derived
tables, CTEs provide a mechanism for defining a subquery that may then be used elsewhere in a query.
Unlike a derived table, a CTE is defined at the beginning of a query and may be referenced multiple times
in the outer query.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the use of CTEs.

 Write queries that create CTEs and return results from the table expression.

 Describe how a CTE can be reused multiple times by the same outer query.

Writing Queries with CTEs

CTEs are named expressions defined in a query.
Like subqueries and derived tables, CTEs provide a
means to break down query problems into
smaller, more modular units.

When writing queries with CTEs, consider the
following guidelines:

 Like derived tables, CTEs are limited in scope
to the execution of the outer query. When the
outer query ends, so does the CTE's lifetime.

 CTEs require a name for the table expression,
in addition to unique names for each of the
columns referenced in the CTE's SELECT clause.

 CTEs may use inline or external aliases for columns.

 Unlike a derived table, a CTE may be referenced multiple times in the same query with one definition.
Multiple CTEs may also be defined in the same WITH clause.

 CTEs support recursion, in which the expression is defined with a reference to itself. Recursive CTEs
are beyond the scope of this course.

For additional reading on recursive CTEs, see the SQL Server 2016 Technical Documentation:

Recursive Queries Using Common Table Expressions

http://go.microsoft.com/fwlink/?LinkID=402773

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-16 Using Table Expressions

Creating Queries with Common Table
Expressions

To create a CTE, define it in a WITH clause, as in the following
syntax:

CTE Syntax

WITH <CTE_name>
AS (<CTE_definition>)

For example, the same query used to illustrate derived tables, when written to use a CTE, looks like this:

CTE Example

WITH CTE_year --name the CTE
AS -- define the subquery
(
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
)
SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM CTE_year --reference the CTE in the outer query
GROUP BY orderyear;

The results:

orderyear cust_count

2006 67

2007 86

2008 81

 (3 row(s) affected)

Demonstration: Using CTEs

In this demonstration, you will see how to:

 Write queries that create CTEs.

Demonstration Steps
Write Queries that Create CTEs

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-17

Check Your Knowledge

Question

Which of the following features is required for a CTE query?

Select the correct answer.

 The query must have a WITH … AS clause.

 The query must include a GROUP BY clause.

 The query must include a CREATE FUNCTION statement.

 The query must include a nested derived query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-18 Using Table Expressions

Lab: Using Table Expressions
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been given a set of business requirements for data and you will write T-SQL
queries to retrieve the specified data from the databases. Because of advanced business requests, you will
have to learn how to create and query different query expressions that represent a valid relational table.

Objectives
After completing this lab, you will be able to:

 Write queries that use views.

 Write queries that use derived tables.

 Write queries that use CTEs.

 Write queries that use inline TVFs.

Estimated Time: 90 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Views

Scenario
In the last 10 modules, you had to prepare many different T-SQL statements to support different business
requirements. Because some of them used a similar table and column structure, you would like to have
them reusable. You will learn how to use one of two persistent table expressions—a view.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve All Products for a Specific Category

3. Write a SELECT Statement Against the Created View

4. Try to Use an ORDER BY Clause in the Created View

5. Add a Calculated Column to the View

6. Remove the Production.ProductsBeverages View

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab11\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-19

 Task 2: Write a SELECT Statement to Retrieve All Products for a Specific Category
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab11\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the productid, productname, supplierid, unitprice, and
discontinued columns from the Production.Products table. Filter the results to include only products
that belong to the category Beverages (categoryid equals 1).

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab11\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

4. Modify the T-SQL code to include the following supplied T-SQL statement. Put this statement before
the SELECT clause:

CREATE VIEW Production.ProductsBeverages AS

5. Execute the complete T-SQL statement. This will create an object view named ProductsBeverages
under the Production schema.

 Task 3: Write a SELECT Statement Against the Created View
1. Write a SELECT statement to return the productid and productname columns from the

Production.ProductsBeverages view. Filter the results to include only products where supplierid equals
1.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Try to Use an ORDER BY Clause in the Created View
1. The IT department has written a T-SQL statement that adds an ORDER BY clause to the view created

in task 1:

ALTER VIEW Production.ProductsBeverages AS
SELECT
productid, productname, supplierid, unitprice, discontinued
FROM Production.Products
WHERE categoryid = 1
ORDER BY productname;

2. Execute the provided code. What happened? What is the error message? Why did the query fail?

3. Modify the supplied T-SQL statement by including the TOP (100) PERCENT option. The query should
look like this:

ALTER VIEW Production.ProductsBeverages AS
SELECT TOP(100) PERCENT
productid, productname, supplierid, unitprice, discontinued
FROM Production.Products
WHERE categoryid = 1
ORDER BY productname;

4. Execute the modified T-SQL statement. By applying the needed changes, you have altered the
existing view. Notice that you are still using the ORDER BY clause.

5. If you write a query against the modified Production.ProductsBeverages view, is it guaranteed that
the retrieved rows will be sorted by productname? Please explain.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-20 Using Table Expressions

 Task 5: Add a Calculated Column to the View
1. The IT department has written a T-SQL statement that adds an additional calculated column to the

view created in task 1:

ALTER VIEW Production.ProductsBeverages AS
SELECT
productid, productname, supplierid, unitprice, discontinued,
CASE WHEN unitprice > 100. THEN N'high' ELSE N'normal' END
FROM Production.Products
WHERE categoryid = 1;

2. Execute the provided query. What happened? What is the error message? Why did the query fail?

3. Apply the changes needed to get the T-SQL statement to execute properly.

 Task 6: Remove the Production.ProductsBeverages View
1. Remove the created view by executing the provided T-SQL statement:

IF OBJECT_ID(N'Production.ProductsBeverages', N'V') IS NOT NULL
DROP VIEW Production.ProductsBeverages;

2. Execute this code exactly as written inside a query window.

Results: After this exercise, you should know how to use a view in T-SQL statements.

Exercise 2: Writing Queries That Use Derived Tables

Scenario
The sales department would like to compare the sales amounts between the ordered year and the
previous year to calculate the growth percentage. To prepare such a report, you will learn how to use
derived tables inside T-SQL statements.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement Against a Derived Table

2. Write a SELECT Statement to Calculate the Total and Average Sales Amount

3. Write a SELECT Statement to Retrieve the Sales Growth Percentage

 Task 1: Write a SELECT Statement Against a Derived Table
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against a derived table and retrieve the productid and productname
columns. Filter the results to include only the rows in which the pricetype column value is equal to
high. Use the SELECT statement from exercise 1, task 4, as the inner query that defines the derived
table. Do not forget to use an alias for the derived table. (You can use the alias “p”.)

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-21

 Task 2: Write a SELECT Statement to Calculate the Total and Average Sales Amount
1. Write a SELECT statement to retrieve the custid column and two calculated columns:

totalsalesamount, which returns the total sales amount per customer, and avgsalesamount, which
returns the average sales amount of orders per customer. To correctly calculate the average sales
amount of orders per customer, you should first calculate the total sales amount per order. You can
do so by defining a derived table based on a query that joins the Sales.Orders and Sales.OrderDetails
tables. You can use the custid and orderid columns from the Sales.Orders table and the qty and
unitprice columns from the Sales.OrderDetails table.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve the Sales Growth Percentage
1. Write a SELECT statement to retrieve the following columns:

 orderyear, representing the year of the order date.

 curtotalsales, representing the total sales amount for the current order year.

 prevtotalsales, representing the total sales amount for the previous order year.

 percentgrowth, representing the percentage of sales growth in the current order year compared
to the previous order year.

2. You will have to write a T-SQL statement using two derived tables. To get the order year and total
sales columns for each SELECT statement, you can query an already existing view named
Sales.OrderValues. The val column represents the sales amount.

3. Do not forget that the order year 2006 does not have a previous order year in the database, but it
should still be retrieved by the query.

4. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

Results: After this exercise, you should be able to use derived tables in T-SQL statements.

Exercise 3: Writing Queries That Use CTEs

Scenario
The sales department needs an additional report showing the sales growth over the years for each
customer. You could use your existing knowledge of derived tables and views, but instead you will
practice how to use a CTE.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses a CTE

2. Write a SELECT Statement to Retrieve the Total Sales Amount for Each Customer

3. Write a SELECT Statement to Compare the Total Sales Amount for Each Customer Over the Previous
Year

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-22 Using Table Expressions

 Task 1: Write a SELECT Statement That Uses a CTE
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement like the one in exercise 2, task 1, but use a CTE instead of a derived table.
Use inline column aliasing in the CTE query and name the CTE ProductBeverages.

3. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer
1. Write a SELECT statement against Sales.OrderValues to retrieve each customer’s ID and total sales

amount for the year 2008. Define a CTE named c2008 based on this query, using the external aliasing
form to name the CTE columns custid and salesamt2008. Join the Sales.Customers table and the
c2008 CTE, returning the custid and contactname columns from the Sales.Customers table and the
salesamt2008 column from the c2008 CTE.

2. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Compare the Total Sales Amount for Each
Customer Over the Previous Year
1. Write a SELECT statement to retrieve the custid and contactname columns from the Sales.Customers

table. Also retrieve the following calculated columns:

 salesamt2008, representing the total sales amount for the year 2008.

 salesamt2007, representing the total sales amount for the year 2007.

 percentgrowth, representing the percentage of sales growth between the year 2007 and 2008.

2. If percentgrowth is NULL, then display the value 0.

3. You can use the CTE from the previous task and add another one for the year 2007. Then join both of
them with the Sales.Customers table. Order the result by the percentgrowth column.

4. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should have an understanding of how to use a CTE in a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-23

Exercise 4: Writing Queries That Use Inline TVFs

Scenario
You have learned how to write a SELECT statement against a view. However, since a view does not
support parameters, you will now use an inline TVF to retrieve data as a relational table based on an input
parameter.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Total Sales Amount for Each Customer

2. Write a SELECT Statement Against the Inline TVF

3. Write a SELECT Statement to Retrieve the Top Three Products Based on the Total Sales Value for a
Specific Customer

4. Using Inline TVFs, Write a SELECT Statement to Compare the Total Sales Amount for Each Customer
Over the Previous Year

5. Remove the Created Inline TVFs

 Task 1: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer
1. Open the T-SQL script 81 - Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.OrderValues view and retrieve the custid and
totalsalesamount columns as a total of the val column. Filter the results to include orders only for the
year 2007.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

4. Define an inline TVF using the following function header and add your previous query after the
RETURN clause:

CREATE FUNCTION dbo.fnGetSalesByCustomer
(@orderyear AS INT) RETURNS TABLE
AS
RETURN

5. Modify the query by replacing the constant year value 2007 in the WHERE clause with the parameter
@orderyear.

6. Highlight the complete code and execute it. This will create an inline TVF named
dbo.fnGetSalesByCustomer.

 Task 2: Write a SELECT Statement Against the Inline TVF
1. Write a SELECT statement to retrieve the custid and totalsalesamount columns from the

dbo.fnGetSalesByCustomer inline TVF. Use the value 2007 for the needed parameter.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-24 Using Table Expressions

 Task 3: Write a SELECT Statement to Retrieve the Top Three Products Based on the
Total Sales Value for a Specific Customer
1. In this task, you will query the Production.Products and Sales.OrderDetails tables. Write a SELECT

statement that retrieves the top three sold products based on the total sales value for the customer
with ID 1. Return the productid and productname columns from the Production.Products table. Use
the qty and unitprice columns from the Sales.OrderDetails table to compute each order line’s value,
and return the sum of all values per product, naming the resulting column totalsalesamount. Filter the
results to include only the rows where the custid value is equal to 1.

2. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\84 - Lab Exercise 4 - Task 3_1 Result.txt.

3. Create an inline TVF based on the following function header, using the previous SELECT statement.
Replace the constant custid value 1 in the query with the function’s input parameter @custid:

CREATE FUNCTION dbo.fnGetTop3ProductsForCustomer
(@custid AS INT) RETURNS TABLE
AS
RETURN

4. Highlight the complete code and execute it. This will create an inline TVF named
dbo.fnGetTop3ProductsForCustomer that accepts a parameter for the customer ID.

5. Test the created inline TVF by writing a SELECT statement against it and use the value 1 for the
customer ID parameter. Retrieve the productid, productname, and totalsalesamount columns, and use
the alias “p” for the inline TVF.

6. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab11\Solution\85 - Lab Exercise 4 - Task 3_2 Result.txt.

 Task 4: Using Inline TVFs, Write a SELECT Statement to Compare the Total Sales
Amount for Each Customer Over the Previous Year
1. Write a SELECT statement to retrieve the same result as in exercise 3, task 3, but use the created TVF

in task 2 (dbo.fnGetSalesByCustomer).

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\Solution\86 - Lab Exercise 4 - Task 4 Result.txt.

 Task 5: Remove the Created Inline TVFs
1. Remove the created inline TVFs by executing the provided T-SQL statement:

IF OBJECT_ID('dbo.fnGetSalesByCustomer') IS NOT NULL
DROP FUNCTION dbo.fnGetSalesByCustomer; IF
OBJECT_ID('dbo.fnGetTop3ProductsForCustomer') IS NOT NULL
DROP FUNCTION dbo.fnGetTop3ProductsForCustomer;

2. Execute this code exactly as written inside a query window.

Results: After this exercise, you should know how to use inline TVFs in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-25

Module Review and Takeaways
In this module, you have learned how to:

 Create simple views and write queries against them.

 Create simple inline TVFs and write queries against them.

 Write queries that use derived tables.

 Write queries that use CTEs.

Review Question(s)
Question: When would you use a CTE rather than a derived table for a query?

Question: Which table expressions allow variables to be passed in as parameters to the
expression?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-1

Module 12
Using Set Operators

Contents:
Module Overview 12-1

Lesson 1: Writing Queries with the UNION Operator 12-2

Lesson 2: Using EXCEPT and INTERSECT 12-6

Lesson 3: Using APPLY 12-9

Lab: Using Set Operators 12-16

Module Review and Takeaways 12-21

Module Overview
Microsoft® SQL Server® provides methods for performing operations using the sets that result from two
or more different queries. In this module, you will learn how to use the set operators UNION, INTERSECT,
and EXCEPT to compare rows between two input sets.

You will also learn how to use forms of the APPLY operator to use the result of one query to collect the
output of a second query, returning the output as a single result set.

Objectives
After completing this module, you will be able to:

 Write queries that combine data using the UNION operator.

 Write queries that compare sets using the INTERSECT and EXCEPT operators.

 Write queries that manipulate rows in a table by using APPLY, combining them with the results of a
derived table or function.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-2 Using Set Operators

Lesson 1
Writing Queries with the UNION Operator

In this lesson, you will learn how to use the UNION operator to combine multiple input sets into a single
result. UNION and UNION ALL provide a mechanism to add one set to another; you can then stack result
sets from two or more queries into a single output result set. UNION stacks rows, compared to JOIN,
which combines columns from different sources.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the conditions necessary to interact between input sets.

 Write queries that use UNION to combine input sets.

 Write queries that use UNION ALL to combine input sets.

Interactions Between Sets

SQL Server provides several operators that act on
sets, each of which has a different effect on the
input sets. The set operators have a number of
common features that you need to understand
before starting to use them:

 Each input set is the result of a query, which
may include any SELECT statement
components you have already learned about,
except an ORDER BY clause.

 The input sets must have the same number of
columns and the columns must have
compatible data types. The column data
types, if not initially compatible, must be made compatible through conversion—this may be implicit
if the data types support it (using the rules for data type precedence discussed in Module 6 of this
course, Working with SQL Server 2016 Data Types); otherwise an explicit conversion might be required
(using CAST or CONVERT).

 A NULL in one set is treated as equal to a NULL in another, despite what you have learned about
comparing NULLs earlier in this course.

 Each operator can be thought of as having two forms: DISTINCT and ALL. For example, UNION
DISTINCT eliminates duplicate rows while combining two sets; UNION ALL combines all rows,
including duplicates. Not all set operators support both forms in SQL Server 2016.

 Note: When working with set operators, it is useful to remember that, in set theory, a set
does not provide a sort order and includes only distinct rows. If you need the results sorted, you
should add an ORDER BY to the final results, as you may not use it inside the input queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-3

Using the UNION Operator

By using the UNION operator, you can combine rows
from one input set with rows from another into a resulting
set. If a row appears in either of the input sets, it will be
returned in the output. Duplicate rows are eliminated by
the UNION operator.

For example, in the TSQL sample database, there are 29
rows in the Production.Suppliers table and 91 rows in the
Sales.Customers table.

Combining all rows from each set would yield 29 plus 91—or 120 rows. However, as duplicates that
appear in both tables are only returned once, UNION returns 93 rows in this example:

UNION Example

SELECT country, city
FROM Production.Suppliers
UNION
SELECT country, city
FROM Sales.Customers;

A partial result:

country city
--------- ---------------
Argentina Buenos Aires
Australia Melbourne
...
USA Walla Walla
Venezuela Barquisimeto
Venezuela Caracas
Venezuela I. de Margarita
Venezuela San Cristóbal
 (93 row(s) affected)

 Note: As with all T-SQL statements, remember that no sort order is guaranteed by set
operators unless one is explicitly specified. Although the results might appear to be sorted, this is
a by-product of the filtering performed and is not assured. If you require sorted output, add an
ORDER BY clause at the end of the second query.

As previously mentioned, set operators can conceptually be thought of in two forms: DISTINCT and ALL.
SQL Server does not implement an explicit UNION DISTINCT, though it does implement UNION ALL. ANSI
SQL standards do specify both as explicit forms (UNION DISTINCT and UNION ALL). In T-SQL, the use of
DISTINCT is not supported but is the implicit default. UNION combines all rows from each input set, and
then filters out duplicates.

From a performance standpoint, the use of UNION will include a filter operation, whether or not there are
duplicate rows. If you need to combine sets and know that there are no duplicates, consider using UNION
ALL to save the overhead of the distinct filter.

 Note: You will learn about UNION ALL in the next lesson.

For more information, see UNION (Transact-SQL) in the SQL Server 2016 Technical Documentation:

UNION (Transact-SQL)

http://aka.ms/omv6m7

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-4 Using Set Operators

Using the UNION ALL Operator

The UNION ALL operator works in a similar way to the
UNION operator—it combines the two input result sets into
one output result set. Unlike UNION, UNION ALL does not
filter out duplicate rows.

The following example amends the one from the previous
topic, using the UNION ALL operator to combine all supplied
locations with all customer locations in the output result set:

UNION ALL Example

SELECT country, city
FROM Production.Suppliers
UNION ALL
SELECT Country, City
FROM Sales.Customers;

Using UNION ALL, 120 rows are returned (29 rows from the Production.Suppliers table and 91 rows from
the Sales.Customers table):

country city
------- ---------------
UK London
USA New Orleans
...
Finland Helsinki
Poland Warszawa
 (120 rows affected)

As UNION ALL does not perform any filtering of duplicates, UNION ALL should be used in place of
UNION in cases where you know there will be no duplicate input rows (or where duplicates exist and are
required).

UNION ALL will often run significantly faster than UNION on the same data set; this performance
difference becomes more obvious as the number of rows in the input result sets increases.

Demonstration: Using UNION and UNION ALL

In this demonstration, you will see how to:

 Use UNION and UNION ALL.

Demonstration Steps
1. Ensure that the MSL-TMG1, 20761B-MIA-DC, and 20761B-MIA-SQL virtual machines are running, and

then log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod12\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. Wait for the script to finish, and then press any key.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-5

6. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod12\Demo folder.

8. In Solution Explorer, expand Queries, and double-click the 11 - Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Verify the correctness of the statement by placing a mark in the column to the right.

Statement Answer

True or false? The results from a UNION query can contain duplicate rows.

Verify the correctness of the statement by placing a mark in the column to the right.

Statement Answer

When combining the output of two sets, UNION and UNION ALL queries
cannot include rows with NULL values, because NULL values cannot be
compared.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-6 Using Set Operators

Lesson 2
Using EXCEPT and INTERSECT

While UNION and UNION ALL combine all rows from input sets, you might need to return either only
those rows in one set but not in the other—or only rows that are present in both sets. For these purposes,
the EXCEPT and INTERSECT operators might be useful to your queries. You will learn how to use EXCEPT
and INTERSECT in this lesson.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the EXCEPT operator to return only rows in one set but not another.

 Write queries that use the INTERSECT operator to return only rows that are present in both sets.

Using the INTERSECT Operator

The T-SQL INTERSECT operator, added in SQL Server 2005,
returns only distinct rows that appear in both input sets.

 Note: While UNION supports both the conceptual
forms DISTINCT and ALL, INTERSECT currently only provides
an implicit DISTINCT option. No duplicate rows will be
returned by the operation.

The following example uses INTERSECT to return
geographical information in common between customers
and suppliers. Remember that there are 91 rows in the
Customers table and 29 in the Suppliers table:

INTERSECT Example

SELECT country, city
FROM Production.Suppliers
INTERSECT
SELECT country, city
FROM Sales.Customers;

Returns:

country city
-------- ---------
Germany Berlin
UK London
Canada Montréal
France Paris
Brazil Sao Paulo
 (5 row(s) affected)

For more information, see EXCEPT and INTERSECT (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

EXCEPT and INTERSECT (Transact-SQL)

http://aka.ms/uo4qu9

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-7

Using the EXCEPT Operator

The T-SQL EXCEPT operator, added in SQL Server
2005, returns only distinct rows that appear in one
set and not the other. Specifically, EXCEPT returns
rows from the input set listed first in the query. As
with queries that use a LEFT OUTER JOIN or RIGHT
OUTER JOIN, the order in which the inputs are
listed is important.

 Note: While UNION supports both
conceptual forms DISTINCT and ALL, EXCEPT
currently only provides an implicit DISTINCT
option. No duplicate rows will be returned by the
operation.

The following example amends the one used previously in this lesson to use EXCEPT to return
geographical information that is not common between the Customers table and the Suppliers table.
Remember that there are 91 rows in the Customers table and 29 rows in the Suppliers table. Initially, the
query is executed with the Suppliers table listed first:

EXCEPT Example

SELECT country, city
FROM Production.Suppliers
EXCEPT
SELECT country, city
FROM Sales.Customers;

There are 24 rows returned. Part of the result set is displayed here:

country city
---------- -------------
Australia Melbourne
Australia Sydney
Canada Ste-Hyacinthe
Denmark Lyngby
Finland Lappeenranta
France Annecy
France Montceau
 (24 row(s) affected)

The results are different when the order of the input result sets is reversed:

EXCEPT Example - Input Set Order Reversed

SELECT country, city
FROM Sales.Customers
EXCEPT
SELECT country, city
FROM Production.Suppliers;

This returns 64 rows. When using EXCEPT, plan the order of the input result sets carefully.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-8 Using Set Operators

Demonstration: Using EXCEPT and INTERSECT

In this demonstration, you will see how to:

 Use INTERSECT and EXCEPT.

Demonstration Steps
1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

You have a table of employees and a table of customers, both of which contain a
column holding the name of the country where the customer or employee is
located. You want to know which countries have at least one customer and at least
one employee. Which set operator should you use?

Select the correct answer.

 UNION ALL

 UNION

 EXCEPT

 INTERSECT

 None of the above

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-9

Lesson 3
Using APPLY

As an alternative to combining or comparing rows from two sets, SQL Server provides a mechanism to
apply a table expression from one set on each row in the other set. In this lesson, you will learn how to use
the APPLY operator to process rows in one set using rows in another.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the use of the APPLY operator to manipulate sets.

 Write queries using the CROSS APPLY operator.

 Write queries using the OUTER APPLY operator.

Using the APPLY Operator

SQL Server provides the APPLY operator to enable
queries that evaluate rows in one input set against the
expression that defines the second input set. Strictly
speaking, APPLY is a table operator, not a set operator.
You will use APPLY in a FROM clause, like a JOIN, rather
than as a set operator that operates on two compatible
result sets of queries.

Conceptually, the APPLY operator is similar to a
correlated subquery in that it applies a correlated table
expression to each row from a table. However, APPLY
differs from correlated subqueries by returning a table-
valued result rather than a scalar or multi-valued result. For example, the table expression could be a TVF;
you can pass elements from the left row as input parameters to the TVF.

 Note: When describing input tables used with APPLY, the terms “left” and “right” are used
in the same way as they are with the JOIN operator, based on the order in which they appear,
relative to one another in the FROM clause.

To use APPLY, you will supply two input sets within a single FROM clause. With APPLY, unlike the set
operators you have learned about, the second, or right, table source is logically processed once per row
found in the first, or left, table source.

APPLY supports two different forms: CROSS APPLY and OUTER APPLY, which you will learn about in this
lesson.

The general syntax for APPLY—each result from the left table source will be passed as an input to the
right table source:

APPLY Syntax

SELECT <column_list>
FROM <left_table_source> AS <alias>
[CROSS]|[OUTER] APPLY
 <right_table_source> AS <alias>;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-10 Using Set Operators

See Using APPLY in the “Remarks” section of FROM (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

FROM (Transact-SQL)

http://aka.ms/r0uc2i

The CROSS APPLY Operator

As you learned in the previous topic, APPLY
executes the right table source for each of the
rows in the left table source—and returns the
results as a single result set.

The CROSS APPLY form of the operator will
include in the output result set only those values
from the left table source where a value is found
in the right table source.

 Note: Note that the term CROSS, when used
in CROSS APPLY, does not have the same meaning
as CROSS when used in CROSS JOIN. Whereas a CROSS JOIN returns all the possible
combinations of the left and right table sources, CROSS APPLY returns only the values from the
left table source where a value is found in the right table source.

This makes a CROSS APPLY statement very similar to an INNER JOIN—this similarity is such that almost all
T-SQL statements that include an INNER JOIN between two tables can be rewritten as a statement using
CROSS APPLY.

Consider the following simple SELECT statement, using an INNER JOIN between the sales orders and sales
order details tables:

CROSS APPLY; INNER JOIN Example

SELECT o.orderid, o.orderdate,
od.productid, od.unitprice, od.qty
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS od
ON o.orderid = od.orderid ;

A partial result from the TSQL sample database:

orderid orderdate productid unitprice qty
----------- ----------------------- ----------- --------------------- ------
10248 2006-07-04 00:00:00.000 11 14.00 12
10248 2006-07-04 00:00:00.000 42 9.80 10
10248 2006-07-04 00:00:00.000 72 34.80 5
10249 2006-07-05 00:00:00.000 14 18.60 9
10249 2006-07-05 00:00:00.000 51 42.40 40
10250 2006-07-08 00:00:00.000 41 7.70 10
10250 2006-07-08 00:00:00.000 51 42.40 35
10250 2006-07-08 00:00:00.000 65 16.80 15
...
(2155 row(s) affected)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-11

Here is the same statement rewritten to use CROSS APPLY:

CROSS APPLY; INNER JOIN Rewritten Example

SELECT o.orderid, o.orderdate,
od.productid, od.unitprice, od.qty
FROM Sales.Orders AS o
CROSS APPLY (SELECT productid, unitprice, qty
 FROM Sales.OrderDetails AS so
 WHERE so.orderid = o.orderid
) AS od;

 Note: Notice that the JOIN predicate
Sales.OrderDetails.orderid = Sales.Orders.orderid
moves from the INNER JOIN clause to the WHERE clause of the right table source when the
query is rewritten to use CROSS APPLY.

When executed, this query returns the same result as the version written using INNER JOIN:

orderid orderdate productid unitprice qty
----------- ----------------------- ----------- --------------------- ------
10248 2006-07-04 00:00:00.000 11 14.00 12
10248 2006-07-04 00:00:00.000 42 9.80 10
10248 2006-07-04 00:00:00.000 72 34.80 5
10249 2006-07-05 00:00:00.000 14 18.60 9
10249 2006-07-05 00:00:00.000 51 42.40 40
10250 2006-07-08 00:00:00.000 41 7.70 10
10250 2006-07-08 00:00:00.000 51 42.40 35
10250 2006-07-08 00:00:00.000 65 16.80 15
...
(2155 row(s) affected)

The OUTER APPLY Operator

As you learned in an earlier topic, APPLY executes
the right table source for each of the rows in the
left table source, and returns the results as a single
result set.

The OUTER APPLY form of the operator will
include all the values from the left table source in
the output result set and values from the right
table source where they exist. Where the right
table source does not contain a value for a left
table source value, columns derived from the right
table source will have a NULL value.

This makes an OUTER APPLY statement very
similar to a LEFT OUTER JOIN—this similarity is such that almost all T-SQL statements that include a LEFT
OUTER JOIN between two tables can be rewritten as a statement using OUTER APPLY.

As with LEFT OUTER JOIN, the order in which the table sources appear might influence the result.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-12 Using Set Operators

The following SELECT statement uses a LEFT OUTER JOIN between the suppliers table and the customers
table to show all countries where suppliers are located—and which of those countries also contain
customers:

OUTER APPLY; LEFT OUTER JOIN Example

SELECT DISTINCT s.country AS supplier_country, c.country as customer_country
FROM Production.Suppliers AS s
LEFT OUTER JOIN Sales.Customers AS c
ON c.country = s.country
ORDER BY supplier_country;

Note: Notice that the JOIN predicate

Sales.Customers.Country = Production.Suppliers.Country

moves from the LEFT OUTER JOIN clause to the WHERE clause of the right table source when the query is
rewritten to use OUTER APPLY.

This query returns the same result as the LEFT OUTER JOIN version of the query:

supplier_country customer_country
---------------- ----------------
Australia NULL
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
Italy Italy
Japan NULL
Netherlands NULL
Norway Norway
Singapore NULL
Spain Spain
Sweden Sweden
UK UK
USA USA
 (16 row(s) affected)

This query can be rewritten using OUTER APPLY:

OUTER APPLY; LEFT OUTER JOIN Rewritten Example

SELECT DISTINCT s.country AS supplier_country, c.country as customer_country
FROM Production.Suppliers AS s
OUTER APPLY (SELECT country
 FROM Sales.Customers AS cu
 WHERE cu.country = s.country
) AS c
ORDER BY supplier_country;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-13

Returns:

supplier_country customer_country
---------------- ----------------
Australia NULL
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
Italy Italy
Japan NULL
Netherlands NULL
Norway Norway
Singapore NULL
Spain Spain
Sweden Sweden
UK UK
USA USA
 (16 row(s) affected)

CROSS APPLY and OUTER APPLY Features

As you learned in the previous topics, there are
many similarities between CROSS APPLY and
INNER JOIN, and OUTER APPLY and LEFT OUTER
JOIN.

However, the APPLY operators enable some types
of query to be executed which could not be
written using JOINs. These queries rely on the left
table source being processed before being applied
to the right table source. Two examples shown in
this topic are using a query returning top results
for each input value and a TVF as the right table
source.

A sales manager has requested a report showing the three most recent orders for each customer,
including customers with no orders. The following query is one way to meet this requirement:

OUTER APPLY: Three Most Recent Orders Per Customer Example

SELECT C.custid, TopOrders.orderid, TopOrders.orderdate
FROM Sales.Customers AS C
OUTER APPLY
 (SELECT TOP (3) orderid, CAST(orderdate AS date) AS orderdate
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC) AS TopOrders;

 Note: Note that because OUTER APPLY is used here, customers with no orders are included
in the result (with NULL in the orderid and orderdate columns). If CROSS APPLY were used
instead of OUTER APPLY, customers with no orders would not appear in the results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-14 Using Set Operators

Partial results, including rows with NULLs, appear as follows:

custid orderid orderdate
----------- ----------- ----------
1 11011 2008-04-09
1 10952 2008-03-16
1 10835 2008-01-15
2 10926 2008-03-04
2 10759 2007-11-28
2 10625 2007-08-08
22 NULL NULL
57 NULL NULL
58 11073 2008-05-05
58 10995 2008-04-02
58 10502 2007-04-10
(265 row(s) affected)

A TVF might be used as the right table source for an instance of the APPLY operator.

The following example uses the supplierid column from the left input table as an input parameter to a
TVF named dbo.fn_TopProductsByShipper. If there are rows in the Suppliers table with no corresponding
products, the rows will not be displayed:

CROSS APPLY: Calling a Table-Valued Function Example

SELECT S.supplierid, s.companyname, P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
CROSS APPLY dbo.fn_TopProductsByShipper(S.supplierid) AS P;

 Note: Note that because CROSS APPLY is used here, suppliers with no products are
excluded from the result.

Partial results appear as follows:

supplierid companyname productid productname unitprice
----------- -------------- ----------- ------------- ---------
1 Supplier SWRXU 2 Product RECZE 19.00
1 Supplier SWRXU 1 Product HHYDP 18.00
1 Supplier SWRXU 3 Product IMEHJ 10.00
2 Supplier VHQZD 4 Product KSBRM 22.00
2 Supplier VHQZD 5 Product EPEIM 21.35
2 Supplier VHQZD 65 Product XYWBZ 21.05
3 Supplier STUAZ 8 Product WVJFP 40.00
3 Supplier STUAZ 7 Product HMLNI 30.00
3 Supplier STUAZ 6 Product VAIIV 25.00

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-15

Demonstration: Using CROSS APPLY and OUTER APPLY

In this demonstration, you will see how to:

 Use forms of the APPLY Operator.

Demonstration Steps
1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Test with CROSS APPLY, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Use OUTER APPLY to include customers with no orders, and
then click Execute.

9. Close SQL Server Management Studio, without saving any changes.

Question: What is the difference between CROSS APPLY and CROSS JOIN?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-16 Using Set Operators

Lab: Using Set Operators
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been provided with a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. Because of the complex business
requirements, you will need to prepare combined results from multiple queries using set operators.

Objectives
After completing this lab, you will be able to:

 Write queries that use the UNION and UNION ALL operators.

 Write queries that use the CROSS APPLY and OUTER APPLY operators.

 Write queries that use the EXCEPT and INTERSECT operators.

Estimated Time: 60 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use UNION Set Operators and UNION ALL
Multi-Set Operators

Scenario
The marketing department needs some additional information regarding segmentation of products and
customers. It would like to have a report, based on multiple queries, which is presented as one result. You
will use the UNION operator to write different SELECT statements, and then merge them together into
one result.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Specific Products

3. Write a SELECT Statement to Retrieve All Products with a Total Sales Amount of More Than $50,000

4. Merge the Results from Task 1 and Task 2

5. Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount for January 2008 and
February 2008

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab12\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-17

 Task 2: Write a SELECT Statement to Retrieve Specific Products
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab12\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the productid and productname columns from the
Production.Products table. Filter the results to include only products that have a categoryid value 4.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab12\Solution\52 - Lab Exercise 1 - Task 1 Result.txt. Remember the
number of rows in the results.

 Task 3: Write a SELECT Statement to Retrieve All Products with a Total Sales Amount
of More Than $50,000
1. Write a SELECT statement to return the productid and productname columns from the

Production.Products table. Filter the results to include only products that have a total sales amount
of more than $50,000. For the total sales amount, you will need to query the Sales.OrderDetails
table and aggregate all order line values (qty * unitprice) for each product.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab12\Solution\53 - Lab Exercise 1 - Task 2 Result.txt. Remember the
number of rows in the results.

 Task 4: Merge the Results from Task 1 and Task 2
1. Write a SELECT statement that uses the UNION operator to retrieve the productid and productname

columns from the T-SQL statements in task 1 and task 2.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab12\Solution\54 - Lab Exercise 1 - Task 3_1 Result.txt.

3. What is the total number of rows in the results? If you compare this number with an aggregate value
of the number of rows from tasks 1 and 2, is there any difference?

4. Copy the T-SQL statement and modify it to use the UNION ALL operator.

5. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab12\Solution\55 - Lab Exercise 1 - Task 3_2 Result.txt.

6. What is the total number of rows in the result? What is the difference between the UNION and
UNION ALL operators?

 Task 5: Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount
for January 2008 and February 2008
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Display the top 10 customers by sales amount for January 2008 and display
the top 10 customers by sales amount for February 2008. (Hint: write two SELECT statements, each
joining Sales.Customers and Sales.OrderValues, and use the appropriate set operator.)

2. Execute the T-SQL code and compare the results that you achieved with the desired results shown in
the file D:\Labfiles\Lab12\Solution\56 - Lab Exercise 1 - Task 4 Result.txt.

Results: After this exercise, you should know how to use the UNION and UNION ALL set operators in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-18 Using Set Operators

Exercise 2: Writing Queries That Use the CROSS APPLY and OUTER APPLY
Operators

Scenario
The sales department needs a more advanced analysis of buying behavior. Staff want to find out the top
three products, based on sales revenue, for each customer. Use the APPLY operator to achieve this result.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve the Last Two Orders for
Each Product

2. Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve the Top Three Products,
Based on Sales Revenue, for Each Customer

3. Use the OUTER APPLY Operator

4. Analyze the OUTER APPLY Operator

5. Remove the TVF Created for This Lab

 Task 1: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Last Two Orders for Each Product
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the productid and productname columns from the
Production.Products table. In addition, for each product, retrieve the last two rows from the
Sales.OrderDetails table based on orderid number.

3. Use the CROSS APPLY operator and a correlated subquery. Order the result by the column productid.

4. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab12\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Top Three Products, Based on Sales Revenue, for Each Customer
1. Execute the provided T-SQL code to create the inline TVF fnGetTop3ProductsForCustomer:

DROP FUNCTION IF EXISTS dbo.fnGetTop3ProductsForCustomer;
GO
CREATE FUNCTION dbo.fnGetTop3ProductsForCustomer
(@custid AS INT) RETURNS TABLE
AS
RETURN
SELECT TOP(3)
d.productid,
p.productname,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
WHERE custid = @custid
GROUP BY d.productid, p.productname
ORDER BY totalsalesamount DESC;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-19

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table. Use the CROSS APPLY operator with the dbo.fnGetTop3ProductsForCustomer
function to retrieve productid, productname, and totalsalesamount columns for each customer.

3. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab12\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. Remember
the number of rows in the results.

 Task 3: Use the OUTER APPLY Operator
1. Copy the T-SQL statement from the previous task and modify it by replacing the CROSS APPLY

operator with the OUTER APPLY operator.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\64 - Lab Exercise 2 - Task 3 Result.txt. Notice that
more rows are returned than in the previous task.

 Task 4: Analyze the OUTER APPLY Operator
1. Copy the T-SQL statement from the previous task and modify it by filtering the results to show only

customers without products. (Hint: in a WHERE clause, look for any column returned by the inline TVF
that is NULL.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

3. What is the difference between the CROSS APPLY and OUTER APPLY operators?

 Task 5: Remove the TVF Created for This Lab
1. Remove the created inline TVF by executing the provided T-SQL code:

DROP FUNCTION IF EXISTS dbo.fnGetTop3ProductsForCustomer;

2. Execute this code exactly as written inside a query window.

Results: After this exercise, you should be able to use the CROSS APPLY and OUTER APPLY operators in
your T-SQL statements.

Exercise 3: Writing Queries That Use the EXCEPT and INTERSECT Operators

Scenario
The marketing department was satisfied with the results from exercise 1, but the staff now need to see
specific rows from one result set that are not present in the other result set. You will have to write
different queries using the EXCEPT and INTERSECT operators.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Return All Customers Who Bought More Than 20 Distinct Products

2. Write a SELECT Statement to Retrieve All Customers from the USA, Except Those Who Bought More
Than 20 Distinct Products

3. Write a SELECT Statement to Retrieve Customers Who Spent More Than $10,000

4. Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators

5. Change the Operator Precedence

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-20 Using Set Operators

 Task 1: Write a SELECT Statement to Return All Customers Who Bought More Than
20 Distinct Products
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter the results
to include only customers who bought more than 20 different products (based on the productid
column from the Sales.OrderDetails table).

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve All Customers from the USA, Except
Those Who Bought More Than 20 Distinct Products
1. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter the results

to include only customers from the country USA and exclude all customers from the previous (task 1)
result. (Hint: use the EXCEPT operator and the previous query.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Spent More Than
$10,000
1. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter only

customers who have a total sales value greater than $10,000. Calculate the sales value using the qty
and unitprice columns from the Sales.OrderDetails table.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

 Task 4: Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators
1. Copy the T-SQL statement from task 2. Add the INTERSECT operator at the end of the statement.

After the INTERSECT operator, add the T-SQL statement from task 3.

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab12\Solution\75 - Lab Exercise 3 - Task 4 Result.txt. Notice the
total number of rows in the results.

3. In business terms, can you explain which customers are part of the result?

 Task 5: Change the Operator Precedence
1. Copy the T-SQL statement from the previous task and add parentheses around the first two SELECT

statements (from the beginning until the INTERSECT operator).

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab12\Solution\76 - Lab Exercise 3 - Task 5 Result.txt. Notice the
total number of rows in the results.

3. Are the results different to the results from task 4? Please explain why.

4. What is the precedence among the set operators?

5. Close SQL Server Management Studio, without saving any changes.

Results: After this exercise, you should have an understanding of how to use the EXCEPT and INTERSECT
operators in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 12-21

Module Review and Takeaways
In this module, you have learned about set operators and the APPLY operator.

Review Question(s)
Question: Which set operator would you use to combine sets if you knew there were no
duplicates and wanted the best possible performance?

Question: Which form of the APPLY operator will not return rows from the left table if the
result of the right table expression is empty?

Question: Which form of the APPLY operator can be used to rewrite LEFT OUTER JOIN
queries?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-1

Module 13
Using Window Ranking, Offset, and Aggregate Functions

Contents:
Module Overview 13-1

Lesson 1: Creating Windows with OVER 13-2

Lesson 2: Exploring Window Functions 13-8

Lab: Using Window Ranking, Offset, and Aggregate Functions 13-16

Module Review and Takeaways 13-20

Module Overview
Microsoft® SQL Server® implements support for SQL windowing operations, which means you can define
a set of rows and apply several different functions against those rows. After you have learned how to work
with windows and window functions, you might find that some types of queries that appeared to require
complex manipulations of data (for example, self-joins, temporary tables, and other constructs) aren't
needed to write your reports.

Objectives
After completing this module, you will be able to:

 Describe the benefits of using window functions.

 Restrict window functions to rows defined in an OVER clause, including partitions and frames.

 Write queries that use window functions to operate on a window of rows and return ranking,
aggregation, and offset comparison results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-2 Using Window Ranking, Offset, and Aggregate Functions

Lesson 1
Creating Windows with OVER

SQL Server provides a number of window functions, which perform calculations such as ranking,
aggregations, and offset comparisons between rows. To use these functions, you will need to write queries
that define windows, or sets, of rows. You will use the OVER clause and its related elements to define the
sets for the window functions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the T-SQL components used to define windows, and the relationships between them.

 Write queries that use the OVER clause, with partitioning, ordering, and framing to define windows.

SQL Windowing

SQL Server provides windows as a method for
applying functions to sets of rows. There are many
applications of this technique that solve common
problems in writing T-SQL queries. For example,
using windows allows the easy generation of row
numbers in a result set and the calculation of
running totals. Windows also provide an efficient
way to compare values in one row with values in
another without needing to join a table to itself
using an inequality operator.

There are several core elements of writing queries
that use windows:

1. Windows allow you to specify an order to rows that will be passed to a window function, without
affecting the final order of the query output.

2. Windows include a partitioning feature, which enables you to specify that you want to restrict a
function only to rows that have the same value as the current row.

3. Windows provide a framing option. It allows you to specify a further subset of rows within a window
partition by setting upper and lower boundaries for the window frame, which presents rows to the
window function.

The following example uses an aggregate window function to calculate a running total. This illustrates the
use of these elements:

Running Total Example

SELECT Category, Qty, Orderyear,
 SUM(Qty) OVER (PARTITION BY Category ORDER BY Orderyear
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS RunningQty
FROM Sales.CategoryQtyYear;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-3

The partial results:

Category Qty Orderyear RunningQty
--------------- ----- ---------- -----------
Beverages 1842 2006 1842
Beverages 3996 2007 5838
Beverages 3694 2008 9532
Condiments 962 2006 962
Condiments 2895 2007 3857
Condiments 1441 2008 5298
Confections 1357 2006 1357
Confections 4137 2007 5494
Confections 2412 2008 7906
Dairy Products 2086 2006 2086
Dairy Products 4374 2007 6460
Dairy Products 2689 2008 9149

During the next few topics of this lesson, you will learn how to use these query elements.

Windowing Components

In order to use windows and window functions in T-SQL,
you will always use one of the subclauses that create and
manipulate windows—the OVER subclause. Additionally,
you may need to create partitions with the PARTITION
BY option, and even further restrict which rows are
applied to a function with framing options. Therefore,
understanding the relationship between these
components is vital.

The general relationship can be expressed as a sequence,
with one element further manipulating the rows output
by the previous element:

1. The OVER clause determines the result set that will be used by the window function. An OVER clause
with no partition defined is unrestricted. It returns all rows to the function.

2. A PARTITION BY clause, if present, restricts the results to those rows with the same value in the
partitioned columns as the current row. For example, PARTITION BY custid restricts the window to
rows with the same custid as the current row. PARTITION BY builds on the OVER clause and cannot
be used without OVER. (An OVER clause without a window partition clause is considered one
partition).

3. A ROW or RANGE clause creates a window frame within the window partition, which allows you to set
a starting and ending boundary around the rows being operated on. A frame requires an ORDER BY
subclause within the OVER clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-4 Using Window Ranking, Offset, and Aggregate Functions

The following example, also seen in the previous topic, aggregates the Qty column against a window in
the OVER clause defined by partitioning on the category column, sorting on the orderyear and framing by
a boundary at the first row and a boundary at the current row. This creates a "moving window," where
each row is aggregated with other rows of the same category value, from the oldest row by orderyear, to
the current row:

Windowing Example

SELECT Category, Qty, Orderyear,
 SUM(Qty) OVER (PARTITION BY category ORDER BY Orderyear
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS RunningQty
FROM Sales.CategoryQtyYear;

The details of each component will be covered in future topics.

 Note: A single query can use multiple window functions, each with its own OVER clause.
Each clause determines its own partitioning, ordering, and framing.

Using OVER

The OVER clause defines the window, or set, of rows that
will be operated on by a window function, which we will
look at in the next lesson. The OVER clause includes
partitioning, ordering, and framing, where each is
applicable.

Used alone, the OVER clause does not restrict the result
set passed to the window function. Used with a
PARTITION BY subclause, OVER restricts the set to those
rows with the same values in the partitioning elements.

The following example shows the use of OVER without an
explicit window partition to define an unrestricted
window that will be used by the ROW_NUMBER function. All rows will be numbered, using an ORDER BY
clause, which is required by ROW_NUMBER. The row numbers will be displayed in a new column named
Running:

OVER Example

SELECT Category, Qty, Orderyear,
 ROW_NUMBER() OVER (ORDER BY Qty DESC) AS Running
FROM Sales.CategoryQtyYear
ORDER BY Running;

The partial result, further ordered by the Running column for display purposes:

Category Qty Orderyear Running
--------------- ----------- ----------- --
Dairy Products 4374 2007 1
Confections 4137 2007 2
Beverages 3996 2007 3
Beverages 3694 2008 4
Seafood 3679 2007 5
Condiments 2895 2007 6
Seafood 2716 2008 7
Dairy Products 2689 2008 8
Grains/Cereals 2636 2007 9

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-5

The next topics will build on this basic use of OVER to define a window of rows.

For further reading on the OVER clause, see the SQL Server 2016 Technical Documentation:

OVER Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402778

Partitioning Windows

Partitioning a window limits a set to rows with the same
value in the partitioning column.

For example, the following code snippet shows the use of
PARTITION BY to create a window partition by category. In
this example, a partition contains only rows with a
category of beverages, or a category of confections:

PARTITION BY Code Snippet

<function_name>() OVER(PARTITION BY Category)

As you have learned, if no partition is defined, then the OVER() clause returns all rows from the underlying
query's result set to the window function.

The following example builds on the one you saw in the previous topic. It adds a PARTITION BY subclause
to the OVER clause, creating a window partition for rows with matching Category values. This allows the
ROW_NUMBER function to number each set of years per category separately. Note that an ORDER BY
subclause has been added to the OVER clause to provide meaning to ROW_NUMBER:

PARTITION BY Example

SELECT Category, Qty, Orderyear,
 ROW_NUMBER() OVER (PARTITION BY Category ORDER BY Qty DESC) AS Running
FROM Sales.CategoryQtyYear
ORDER BY Category;

The partial result:

Category Qty Orderyear Running

--------------- ----------- ----------- ---
Beverages 3996 2007 1
Beverages 3694 2008 2
Beverages 1842 2006 3
Condiments 2895 2007 1
Condiments 1441 2008 2
Condiments 962 2006 3
Confections 4137 2007 1
Confections 2412 2008 2
Confections 1357 2006 3

 Note: If you intend to add framing to the window partition, an ORDER BY subclause will
also be needed in the OVER clause, as discussed in the next topic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-6 Using Window Ranking, Offset, and Aggregate Functions

Ordering and Framing

As you have learned, you use window partitions to define
a subset of rows within the outer window defined by
OVER. In a similar approach, window framing allows you
to further restrict the rows available to the window
function. You can think of a frame as a moving window
over the data, starting and ending at positions you
define.

To define window frames, use the ROW or RANGE
subclauses to provide a starting and an ending boundary.
For example, to set a frame that extends from the first
row in the partition to the current row (such as to create
a moving window for a running total), follow these steps:

1. Define an OVER clause with a PARTITION BY element.

2. Define an ORDER BY subclause to the OVER clause. This will cause the concept of "first row" to be
meaningful.

3. Add the ROWS BETWEEN subclause, setting the starting boundary using UNBOUNDED PRECEDING.
UNBOUNDED means go all the way to the boundary in the direction specified as PRECEDING
(before). Add the CURRENT ROW element to indicate the ending boundary is the row being
calculated.

 Note: Since OVER returns a set, and sets have no order, an ORDER BY subclause is required
for the framing operation to be useful. This can be (and typically is) different from ORDER BY,
which determines the display order for the final result set.

The following example uses framing to create a moving window, where each row is the end of a frame,
starting with the first row in the window partitioned by category and ordered by year. The SUM function
calculates an aggregate in each window partition's frame:

Framing Example

SELECT Category, Qty, Orderyear,
 SUM(Qty) OVER (PARTITION BY Category ORDER BY Orderyear
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS RunningQty
FROM Sales.CategoryQtyYear;

The partial results:

Category Qty Orderyear RunningQty
--------------- ----------- ----------- -----------
Beverages 1842 2006 1842
Beverages 3996 2007 5838
Beverages 3694 2008 9532
Condiments 962 2006 962
Condiments 2895 2007 3857
Condiments 1441 2008 5298
Confections 1357 2006 1357
Confections 4137 2007 5494
Confections 2412 2008 7906
Dairy Products 2086 2006 2086
Dairy Products 4374 2007 6460
Dairy Products 2689 2008 9149

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-7

Demonstration: Using OVER and Partitioning

In this demonstration, you will see how to:

 Use OVER, PARTITION BY, and ORDER BY clauses.

Demonstration Steps
Use OVER, PARTITION BY, and ORDER BY Clauses

1. Ensure that the 20761D-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod13\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. Wait for the script to finish, and then press any key.

6. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod13\Demo folder.

8. In Solution Explorer, open the 11 - Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute.

13. Select the code under the comment Step 5, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Sequencing Activity
Put the following elements into the logical order in which they are processed in a windowed query by
numbering each to indicate the correct order.

 Steps

 The OVER clause

 The PARTITION BY clause

 The ROW or RANGE clause

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-8 Using Window Ranking, Offset, and Aggregate Functions

Lesson 2
Exploring Window Functions

SQL Server 2016 provides window functions to operate on a window of rows. In addition to window
aggregate functions, which you will find to be conceptually similar to grouped aggregate functions, you
can use window ranking, distribution, and offset functions in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use window aggregate functions.

 Write queries that use window ranking functions.

 Write queries that use window offset functions.

Defining Window Functions

A window function is applied to a window, or set,
of rows. Earlier in this course, you learned about
group aggregate functions such as SUM, MIN, and
MAX, which operated on a set of rows defined by
a GROUP BY clause. In window operations, you
can use these functions, in addition to others, to
operate on a set of rows defined in a window by
an OVER clause and its elements.

SQL Server window functions can be found in the
following categories, which will be discussed in the
next topics:

 Aggregate functions, such as SUM, which
operate on a window and return a single row.

 Ranking functions, such as RANK, which depend on a sort order and return a value representing the
rank of a row, with respect to other rows in the window.

 Distribution functions, such as CUME_DIST, which calculate the distribution of a value in a window of
rows.

 Offset functions, such as LEAD, which return values from other rows relative to the position of the
current row.

When used in windowing scenarios, these functions depend on the result set returned by the OVER clause
and any further restrictions you provide within OVER, such as partitioning and framing.

The following example uses the RANK function to calculate a rank of each row by unitprice, from high to
low value. Note that there is no explicit window partition clause defined:

RANK Example

SELECT productid, productname, unitprice,
 RANK() OVER(ORDER BY unitprice DESC) AS pricerank
FROM Production.Products
ORDER BY pricerank;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-9

The partial result:

productid productname unitprice pricerank

----------- ------------- --------------------- ---------
38 Product QDOMO 263.50 1
29 Product VJXYN 123.79 2
9 Product AOZBW 97.00 3
20 Product QHFFP 81.00 4
18 Product CKEDC 62.50 5
59 Product UKXRI 55.00 6
51 Product APITJ 53.00 7
62 Product WUXYK 49.30 8
43 Product ZZZHR 46.00 9
28 Product OFBNT 45.60 10
27 Product SMIOH 43.90 11
63 Product ICKNK 43.90 11
8 Product WVJFP 40.00 13

For comparison, the following example adds a partition on categoryid (and adds categoryid to the final
ORDER BY clause). Note that the ranking is calculated per partition:

RANK with PARTITION Example

SELECT categoryid, productid, unitprice,
 RANK() OVER(PARTITION BY categoryid ORDER BY unitprice DESC) AS pricerank
FROM Production.Products
ORDER BY categoryid, pricerank;

The partial result, edited for space:

categoryid productid unitprice pricerank
----------- ----------- --------- ---------
1 38 263.50 1
1 43 46.00 2
1 2 19.00 3
2 63 43.90 1
2 8 40.00 2
2 61 28.50 3
2 6 25.00 4
3 20 81.00 1
3 62 49.30 2
3 27 43.90 3
3 26 31.23 4

Notice that the addition of partitioning allows the window function to operate at a more granular level
than when OVER returns an unrestricted set.

 Note: Repeating values and gaps in the pricerank column are expected when using RANK
in case of ties. Use DENSE_RANK if gaps are not desired. See the next topics for more
information.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-10 Using Window Ranking, Offset, and Aggregate Functions

Window Aggregate Functions

Window aggregate functions are similar to the
aggregate functions you have already used in this
course. They aggregate a set of rows and return a
single value. However, when used in the context of
windows, they operate on the set returned by the
OVER clause, not on a set defined by a grouped
query using GROUP BY.

Window aggregate functions provide support for
windowing elements you have learned about in
this module, such as partitioning, ordering, and
framing. Unlike other window functions, ordering
is not required with aggregate functions, unless
you are also specifying a frame.

The following example uses a SUM function to return the total sales per customer, displayed as a new
column:

Window Aggregate Example

SELECT custid,
 ordermonth,
 qty,
 SUM(qty) OVER (PARTITION BY custid) AS totalpercust
FROM Sales.CustOrders;

The partial result, edited for space:

custid ordermonth qty totalpercust
----------- ----------------------- ----------- ------------
1 2007-08-01 00:00:00.000 38 174
1 2007-10-01 00:00:00.000 41 174
1 2008-01-01 00:00:00.000 17 174
2 2006-09-01 00:00:00.000 6 63
2 2007-08-01 00:00:00.000 18 63
3 2006-11-01 00:00:00.000 24 359
3 2007-04-01 00:00:00.000 30 359
3 2007-05-01 00:00:00.000 80 359
4 2007-02-01 00:00:00.000 40 650
4 2007-06-01 00:00:00.000 96 650

While the repeating of the sum may not immediately seem useful, you can use any manipulation with the
result of the window aggregate, such as determining ratios of each sale to the total per customer:

Further Window Aggregate Example

SELECT custid, ordermonth, qty,
 SUM(qty) OVER (PARTITION BY custid) AS custtotal,
 CAST(100. * qty/SUM(qty) OVER (PARTITION BY custid)AS NUMERIC(8,2)) AS
 OfTotal
FROM Sales.CustOrders;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-11

The result:

custid ordermonth qty custtotal OfTotal
------ ----------------------- --- ---------- -------
1 2007-08-01 00:00:00.000 38 174 21.84
1 2007-10-01 00:00:00.000 41 174 23.56
1 2008-01-01 00:00:00.000 17 174 9.77
1 2008-03-01 00:00:00.000 18 174 10.34
1 2008-04-01 00:00:00.000 60 174 34.48
2 2006-09-01 00:00:00.000 6 63 9.52
2 2007-08-01 00:00:00.000 18 63 28.57
2 2007-11-01 00:00:00.000 10 63 15.87
2 2008-03-01 00:00:00.000 29 63 46.03
3 2006-11-01 00:00:00.000 24 359 6.69
3 2007-04-01 00:00:00.000 30 359 8.36
3 2007-05-01 00:00:00.000 80 359 22.28
3 2007-06-01 00:00:00.000 83 359 23.12
3 2007-09-01 00:00:00.000 102 359 28.41
3 2008-01-01 00:00:00.000 40 359 11.14

Window Ranking Functions

Window ranking functions return a value
representing the rank of a row with respect to
other rows in the window. To accomplish this,
ranking functions require an ORDER BY element
within the OVER clause, to establish the position of
each row within the window.

 Note: Remember that the ORDER BY
element within the OVER clause affects only the
processing of rows by the window function. To
control the display order of the results, add an
ORDER BY clause to the end of the SELECT
statement, as with other queries.

The primary difference between RANK and DENSE_RANK is the handling of rows when there are tie
values.

For example, the following query uses RANK and DENSE_RANK side-by-side to illustrate how RANK inserts
a gap in the numbering after a set of tied row values, whereas DENSE_RANK does not:

RANK and DENSE_RANK Example

SELECT CatID, CatName, ProdName, UnitPrice,
 RANK() OVER(PARTITION BY CatID ORDER BY UnitPrice DESC) AS PriceRank,
 DENSE_RANK() OVER(PARTITION BY CatID ORDER BY UnitPrice DESC) AS DensePriceRank
FROM Production.CategorizedProducts
ORDER BY CatID;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-12 Using Window Ranking, Offset, and Aggregate Functions

The partial results follow. Note the rank numbering of the rows following the products with a unitprice of
18.00:

CatID CatName ProdName UnitPrice PriceRank DensePriceRank
----- --------- ------------- --------- --------- --------------
1 Beverages Product QDOMO 263.50 1 1
1 Beverages Product ZZZHR 46.00 2 2
1 Beverages Product RECZE 19.00 3 3
1 Beverages Product HHYDP 18.00 4 4
1 Beverages Product LSOFL 18.00 4 4
1 Beverages Product NEVTJ 18.00 4 4
1 Beverages Product JYGFE 18.00 4 4
1 Beverages Product TOONT 15.00 8 5
1 Beverages Product XLXQF 14.00 9 6
1 Beverages Product SWNJY 14.00 9 6
1 Beverages Product BWRLG 7.75 11 7
1 Beverages Product QOGNU 4.50 12 8

Go to Ranking Functions (Transact-SQL) in the SQL Server 2016 Technical Documentation:

Ranking Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402779

Window Distribution Functions

Window distribution functions perform statistical
analysis on the rows within the window or window
partition. Partitioning a window is optional for
distribution functions, but ordering is required.

Distribution functions return a rank of a row, but
instead of being expressed as an ordinal number,
as with RANK, DENSE_RANK, or ROW_NUMBER, it
is expressed as a ratio between 0 and 1. SQL
Server 2016 provides rank distribution with the
PERCENT_RANK and CUME_DIST functions. It
provides inverse distribution with the
PERCENTILE_CONT and PERCENTILE_DISC
functions.

These functions are listed here for completeness only and are beyond the scope of this course. For more
information, see the SQL Server 2016 Technical Documentation:

Analytic Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402780

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-13

Window Offset Functions

Windows offset functions give access to values located in
rows other than the current row. This can enable queries
that perform comparisons between rows, without the
need to join the table to itself.

Offset functions operate on a position that is either
relative to the current row, or relative to the starting or
ending boundary of the window frame. LAG and LEAD
operate on an offset to the current row. FIRST_VALUE
and LAST_VALUE operate on an offset from the window
frame.

 Note: Since FIRST_VALUE and LAST_VALUE operate on offsets from the window frame, it is
important to remember to specify framing options other than the default of RANGE BETWEEN
UNBOUND PRECEDING AND CURRENT ROW.

The following example uses the LEAD function to compare year-over-year sales. The offset is 1, returning
the next row's value. LEAD returns a 0 if a NULL is found in the next row's value, such as when there are
no sales past the latest year:

Window Offset Function Example

SELECT employee, orderyear ,totalsales AS currsales,
 LEAD(totalsales, 1,0) OVER (PARTITION BY employee ORDER BY orderyear) AS nextsales
FROM Sales.OrdersByEmployeeYear
ORDER BY employee, orderyear;

The partial results:

employee orderyear currsales nextsales
-------- --------- --------- ---------
1 2006 38789.00 97533.58
1 2007 97533.58 65821.13
1 2008 65821.13 0.00
2 2006 22834.70 74958.60
2 2007 74958.60 79955.96
2 2008 79955.96 0.00
3 2006 19231.80 111788.61
3 2007 111788.61 82030.89
3 2008 82030.89 0.00

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-14 Using Window Ranking, Offset, and Aggregate Functions

Demonstration: Exploring Windows Functions

In this demonstration, you will see how to:

 Use window aggregate, ranking, and offset functions.

Demonstration Steps
Use Window Aggregate, Ranking, and Offset Functions

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Select the code under the comment Step 8, and then click Execute.

10. Select the code under the comment Step 9, and then click Execute.

11. Select the code under the comment Step 10, and then click Execute.

12. Select the code under the comment Step 11, and then click Execute.

13. Close SQL Server Management Studio without saving any files.

Categorize Activity
Place each windowing function into the appropriate category. Indicate your answer by writing the
category number to the right of each item.

Items

1 SUM()

2 RANK()

3 PERCENT_RANK()

4 MIN()

5 DENSERANK()

6 CUME_DIST()

7 MAX()

8 ROW_NUMBER()

9 PERCENTILE_CONT()

10 NTITLE()

11 PERCENTILE_DISC()

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-15

Category 1 Category 2 Category 3

Window Aggregate Functions Window Ranking Function Window Distribution
Functions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-16 Using Window Ranking, Offset, and Aggregate Functions

Lab: Using Window Ranking, Offset, and Aggregate
Functions

Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been provided with a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. To fill these requests, you will need to
calculate ranking values, as well as the difference between two consecutive rows, and running totals. You
will use window functions to achieve these calculations.

Objectives
After completing this lab, you will be able to:

 Write queries that use ranking functions.

 Write queries that use offset functions.

 Write queries that use window aggregation functions.

Estimated Time: 60 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Ranking Functions

Scenario
The sales department would like to rank orders by their values for each customer. You will provide the
report by using the RANK function. You will also practice how to add a calculated column to display the
row number in the SELECT clause.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement That Uses the ROW_NUMBER Function to Create a Calculated Column

3. Add an Additional Column Using the RANK Function

4. Write A SELECT Statement to Calculate a Rank, Partitioned by Customer and Ordered by the Order
Value

5. Write a SELECT Statement to Rank Orders, Partitioned by Customer and Order Year, and Ordered by the
Order Value

6. Filter Only Orders with the Top Two Ranks

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab13\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-17

 Task 2: Write a SELECT Statement That Uses the ROW_NUMBER Function to Create a
Calculated Column
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab13\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the orderid, orderdate, and val columns in addition to a
calculated column named rowno from the view Sales.OrderValues. Use the ROW_NUMBER function to
return rowno. Order the row numbers by the orderdate column.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab13\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

 Task 3: Add an Additional Column Using the RANK Function
1. Copy the previous T-SQL statement and modify it by including an additional column named rankno.

To create rankno, use the RANK function, with the rank order based on the orderdate column.

2. Execute the modified statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab13\ Solution\53 - Lab Exercise 1 - Task 2 Result.txt. Notice the
different values in the rowno and rankno columns for some of the rows.

3. What is the difference between the RANK and ROW_NUMBER functions?

 Task 4: Write A SELECT Statement to Calculate a Rank, Partitioned by Customer and
Ordered by the Order Value
1. Write a SELECT statement to retrieve the orderid, orderdate, custid, and val columns, as well as a

calculated column named orderrankno from the Sales.OrderValues view. The orderrankno column
should display the rank per each customer independently, based on val ordering in descending order.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab13\ Solution\54 - Lab Exercise 1 - Task 3 Result.txt.

 Task 5: Write a SELECT Statement to Rank Orders, Partitioned by Customer and
Order Year, and Ordered by the Order Value
1. Write a SELECT statement to retrieve the custid and val columns from the Sales.OrderValues view.

Add two calculated columns:

o orderyear as a year of the orderdate column.

o orderrankno as a rank number, partitioned by the customer and order year, and ordered by the
order value in descending order.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab13\ Solution\55 - Lab Exercise 1 - Task 4 Result.txt.

 Task 6: Filter Only Orders with the Top Two Ranks
1. Copy the previous query and modify it to filter only orders with the first two ranks based on the

orderrankno column.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab13\ Solution\56 - Lab Exercise 1 - Task 5 Result.txt.

Results: After this exercise, you should know how to use ranking functions in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-18 Using Window Ranking, Offset, and Aggregate Functions

Exercise 2: Writing Queries That Use Offset Functions

Scenario
You need to provide separate reports to analyze the difference between two consecutive rows. This will
enable business users to analyze growth and trends.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Next Row Using a Common Table Expression (CTE)

2. Add a Column to Display the Running Sales Total

3. Analyze the Sales Information for the Year 2007

 Task 1: Write a SELECT Statement to Retrieve the Next Row Using a Common Table
Expression (CTE)
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Define a CTE named OrderRows based on a query that retrieves the orderid, orderdate, and val
columns from the Sales.OrderValues view. Add a calculated column named rowno using the
ROW_NUMBER function, ordering by the orderdate and orderid columns.

3. Write a SELECT statement against the CTE and use the LEFT JOIN with the same CTE to retrieve the
current row and the previous row based on the rowno column. Return the orderid, orderdate, and val
columns for the current row and the val column from the previous row as prevval. Add a calculated
column named diffprev to show the difference between the current val and previous val.

4. Execute the T-SQL code and compare the results that you achieved with the desired results shown in
the file D:\Labfiles\Lab13\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Add a Column to Display the Running Sales Total
1. Write a SELECT statement that uses the LAG function to achieve the same results as the query in the

previous task. The query should not define a CTE.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab13\ Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Analyze the Sales Information for the Year 2007
1. Define a CTE named SalesMonth2007 that creates two columns: monthno (the month number of the

orderdate column) and val (aggregated val column). Filter the results to include only the order year
2007 and group by monthno.

2. Write a SELECT statement to retrieve the monthno and val columns. Add two calculated columns:

o avglast3months. This column should contain the average sales amount for the last three months
before the current month, using a window aggregate function. You can assume that there are no
missing months.

o ytdval. This column should contain the cumulative sales value up to the current month.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab13\ Solution\63 - Lab Exercise 2 - Task 3 Result.txt.

Results: After this exercise, you should be able to use the offset functions in your T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 13-19

Exercise 3: Writing Queries That Use Window Aggregate Functions

Scenario
To better understand the cumulative sales value of a customer through time and to provide the sales
analyst with a year-to-date analysis, you will have to write different SELECT statements that use the
window aggregate functions.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Display the Contribution of Each Customer’s Order Compared to That
Customer’s Total Purchase

2. Add a Column to Display the Running Sales Total

3. Analyze the Year-to-Date Sales Amount and Average Sales Amount for the Last Three Months

 Task 1: Write a SELECT Statement to Display the Contribution of Each Customer’s
Order Compared to That Customer’s Total Purchase
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid, orderid, orderdate, and val columns from the
Sales.OrderValues view. Add a calculated column named percoftotalcust containing a percentage
value of each order sales amount compared to the total sales amount for that customer.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab13\ Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Add a Column to Display the Running Sales Total
1. Copy the previous SELECT statement and modify it by adding a new calculated column named runval.

This column should contain a running sales total for each customer based on order date, using
orderid as the tiebreaker.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab13\ Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Analyze the Year-to-Date Sales Amount and Average Sales Amount for the
Last Three Months
1. Copy the SalesMonth2007 CTE in the final task in exercise 2. Write a SELECT statement to retrieve the

monthno and val columns. Add two calculated columns:

o avglast3months. This column should contain the average sales amount for the last three months
before the current month using a window aggregate function. You can assume that there are no
missing months.

o ytdval. This column should contain the cumulative sales value up to the current month.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab13\ Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

3. Close SQL Server Management Studio without saving any changes.

Results: After this exercise, you should have a basic understanding of how to use window aggregate
functions in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-20 Using Window Ranking, Offset, and Aggregate Functions

Module Review and Takeaways
In this module, you have learned how to:

 Describe the benefits of using window functions.

 Restrict window functions to rows defined in an OVER clause, including partitions and frames.

 Write queries that use window functions to operate on a window of rows and return ranking,
aggregation, and offset comparison results.

Review Question(s)
Question: What results will be returned by a ROW_NUMBER function if there is no ORDER
BY clause in the query?

Question: Which ranking function would you use to return the values 1,1,3? Which would
return 1,1,2?

Question: Can a window frame extend beyond the boundaries of the window partition
defined in the same OVER() clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-1

Module 14
Pivoting and Grouping Sets

Contents:
Module Overview 14-1

Lesson 1: Writing Queries with PIVOT and UNPIVOT 14-2

Lesson 2: Working with Grouping Sets 14-7

Lab: Pivoting and Grouping Sets 14-12

Module Review and Takeaways 14-18

Module Overview
This module discusses more advanced manipulations of data, building on the basics you have learned so
far in the course. First, you will learn how to use the PIVOT and UNPIVOT operators to change the
orientation of data from column-oriented to row-oriented and back. Next, you will learn how to use the
GROUPING SET subclause of the GROUP BY clause to specify multiple groupings in a single query. This
will include the use of the CUBE and ROLLUP subclauses of GROUP BY to automate the setup of grouping
sets.

Objectives
After completing this module, you will be able to:

 Write queries that pivot and unpivot result sets.

 Write queries that specify multiple groupings with grouping sets.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-2 Pivoting and Grouping Sets

Lesson 1
Writing Queries with PIVOT and UNPIVOT

Sometimes you may need to present data in a different orientation to how it is stored, with respect to row
and column layout. For example, some data may be easier to compare if you can arrange values across
columns of the same row. In this lesson, you will learn how to use the T-SQL PIVOT operator to
accomplish this. You will also learn how to use the UNPIVOT operator to return the data to a rows-based
orientation.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how pivoting data can be used in T-SQL queries.

 Write queries that pivot data from rows to columns using the PIVOT operator.

 Write queries that unpivot data from columns back to rows using the UNPIVOT operator.

What Is Pivoting?

Pivoting data in SQL Server rotates its display from a
rows-based orientation to a columns-based orientation. It
does this by consolidating values in a column to a list of
distinct values, and then projecting that list across as
column headings. Typically, this includes aggregation to
column values in the new columns.

For example, the partial source data below lists repeating
values for Category and Orderyear, along with values for
Qty, for each instance of a Category/Orderyear pair:

Category Qty Orderyear
--------------- ------ -----------
Dairy Products 12 2006
Grains/Cereals 10 2006
Dairy Products 5 2006
Seafood 2 2007
Confections 36 2007
Condiments 35 2007
Beverages 60 2007
Confections 55 2007
Condiments 16 2007
Produce 15 2007
Dairy Products 60 2007
Dairy Products 20 2007
Confections 24 2007
...
Condiments 2 2008
 (2155 row(s) affected)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-3

To analyze this by category and year, you might want to arrange the values to be displayed as follows,
summing the Qty column along the way:

Category 2006 2007 2008
-------------- ---- ---- ----
Beverages 1842 3996 3694
Condiments 962 2895 1441
Confections 1357 4137 2412
Dairy Products 2086 4374 2689
Grains/Cereals 549 2636 1377
Meat/Poultry 950 2189 1060
Produce 549 1583 858
Seafood 1286 3679 2716
 (8 row(s) affected)

In the pivoting process, each distinct year was created as a column header, and values in the Qty column
were grouped by Category and aggregated. This is a very useful technique in many scenarios.

For more information, see the SQL Server 2016 Technical Documentation:

Using PIVOT and UNPIVOT

http://go.microsoft.com/fwlink/?LinkID=402781

Elements of PIVOT

The T-SQL PIVOT table operator, introduced in
Microsoft® SQL Server® 2005, operates on the output of
the FROM clause in a SELECT statement. To use PIVOT,
you need to supply three elements to the operator:

 Grouping: in the FROM clause, you need to provide
the input columns. From those columns, PIVOT will
determine which column(s) will be used to group the
data for aggregation. This is based on looking at
which columns are not being used as other elements in the PIVOT operator.

 Spreading: you need to provide a comma-delimited list of values to be used as the column headings
for the pivoted data. The values need to occur in the source data.

 Aggregation: you need to provide an aggregation function (SUM, and so on) to be performed on
the grouped rows.

Additionally, you need to assign a table alias to the result table of the PIVOT operator. The following
example shows the elements in place:

In this example, Orderyear is the column providing the spreading values, Qty is used for aggregation, and
Category for grouping. Orderyear values are enclosed in delimiters to indicate that they are identifiers of
columns in the result:

PIVOT Example

SELECT Category, [2006],[2007],[2008]
FROM (SELECT Category, Qty, Orderyear FROM Sales.CategoryQtyYear) AS D
 PIVOT(SUM(qty) FOR orderyear IN ([2006],[2007],[2008])) AS pvt;

 Note: Any attributes in the source subquery, that are not used for aggregation or
spreading, will be used as grouping elements—be sure that no unnecessary attributes are
included in the subquery.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-4 Pivoting and Grouping Sets

One of the challenges in writing queries using PIVOT is the need to supply a fixed list of spreading
elements to the PIVOT operator, such as the specific order year values above. Later in this course, you will
learn how to write dynamically-generated queries, which may help you write PIVOT queries with more
flexibility.

Writing Queries with UNPIVOT

Unpivoting data is the logical reverse of pivoting
data. Instead of turning rows into columns,
unpivot turns columns into rows. This is a
technique useful in taking data that has already
been pivoted (with or without using a T-SQL
PIVOT operator) and returning it to a row-
oriented tabular display. SQL Server provides the
UNPIVOT table operator to accomplish this.

When unpivoting data, one or more columns is
defined as the source to be converted into rows.
The data in those columns is spread, or split, into
one or more new rows, depending on how many
columns are being unpivoted.

In the following source data, three columns will be unpivoted. Each Orderyear value will be copied into a
new row and associated with its Category value. Any NULLs will be removed in the process and no row is
created:

Category 2006 2007 2008
--------------- ---- ---- ----
Beverages 1842 3996 3694
Condiments 962 2895 1441
Confections 1357 4137 2412
Dairy Products 2086 374 2689
Grains/Cereals 549 2636 1377
Meat/Poultry 950 2189 1060
Produce 549 1583 858
Seafood 1286 3679 2716

For each intersection of Category and Orderyear, a new row will be created, as in these partial results:

category qty orderyear
--------------- ---- ---------
Beverages 1842 2006
Beverages 3996 2007
Beverages 3694 2008
Condiments 962 2006
Condiments 2895 2007
Condiments 1441 2008
Confections 1357 2006
Confections 4137 2007
Confections 2412 2008

 Note: Unpivoting does not restore the original data. Detail-level data was lost during the
aggregation process in the original pivot. UNPIVOT has no ability to allocate values to return to
original detail values.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-5

To use the UNPIVOT operator, you need to provide three elements:

 Source columns to be unpivoted.

 A name for the new column that will display the unpivoted values.

 A name for the column that will display the names of the unpivoted values.

 Note: As with PIVOT, you will define the output of the UNPIVOT table operator as a
derived table and provide its name.

The following example specifies 2006, 2007, and 2008 as the columns to be unpivoted, using the new
column name orderyear and the qty values to be displayed in a new qty column. (This technique was used
to generate the sample data in the previous example.)

UNPIVOT Example

SELECT category, qty, orderyear
FROM Sales.PivotedCategorySales
UNPIVOT(qty FOR orderyear IN([2006],[2007],[2008])) AS unpvt;

The partial results:

category qty orderyear
--------------- ----------- ---------
Beverages 1842 2006
Beverages 3996 2007
Beverages 3694 2008
Condiments 962 2006
Condiments 2895 2007
Condiments 1441 2008
Confections 1357 2006
Confections 4137 2007
Confections 2412 2008
Dairy Products 2086 2006
Dairy Products 4374 2007
Dairy Products 2689 2008

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-6 Pivoting and Grouping Sets

Demonstration: Writing Queries with PIVOT and UNPIVOT

In this demonstration, you will see how to:

 Use PIVOT and UNPIVOT.

Demonstration Steps
Use PIVOT and UNPIVOT

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod14\Setup.cmd as an administrator.

3. At the command prompt, type y, and then press Enter.

4. When the script completes, close the command prompt window.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod14\Demo folder.

7. In Solution Explorer, open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Select the code under the comment Step 6, and then click Execute.

14. Select the code under the comment Step 7, and then click Execute.

15. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT category, qty, orderyear

FROM Sales.PivotedCategorySales

UNPIVOT(qty FOR orderyear) AS unpvt;

In this query, you have provided a name for the new column that will display the unpivoted
values (“qty”). You have also provided a name for the column that will display the names of
the unpivoted values (orderyear). What else must you provide for the UNPIVOT query to
execute?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-7

Lesson 2
Working with Grouping Sets

As you learned earlier in this course, you can use the GROUP BY clause in a SELECT statement to arrange
rows in groups, typically to support aggregations. However, if you need to group by different attributes at
the same time, for example to report at different levels, you will need multiple queries combined with
UNION ALL. SQL Server 2008 and later provides the GROUPING SETS subclause to GROUP BY, which
enables multiple sets to be returned in the same query.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries using the GROUPING SETS subclause.

 Write queries that use ROLLUP AND CUBE.

 Write queries that use the GROUPING_ID function.

Writing Queries with Grouping Sets

If you need to produce aggregates of multiple groupings
in the same query, you can use the GROUPING SETS
subclause of the GROUP BY clause.

GROUPING SETS provide an alternative to using UNION
ALL to combine results from multiple individual queries,
each with its own GROUP BY clause.

With GROUPING SETS, you can specify multiple
combinations of attributes on which to group, as in the
following syntax example:

GROUPING SETS Syntax

SELECT <column list with aggregate(s)>
FROM <source>
GROUP BY
GROUPING SETS(
 (<column_name>),--one or more columns
 (<column_name>),--one or more columns
 () -- empty parentheses if aggregating all rows
);

With GROUPING SETS, you can specify which attributes to group on and their order. If you want to group
on any possible combination of attributes instead, see the topic on CUBE and ROLLUP later in this lesson.

The following example uses GROUPING SETS to aggregate on the Category and Cust columns, in addition
to the empty parentheses notation to aggregate all rows:

GROUPING SETS Example

Code Example Content
SELECT Category, Cust, SUM(Qty) AS TotalQty
FROM Sales.CategorySales
GROUP BY
 GROUPING SETS((Category),(Cust),())
ORDER BY Category, Cust;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-8 Pivoting and Grouping Sets

The results:

Category Cust TotalQty
----------- ---- --------
NULL NULL 999
NULL 1 80
NULL 2 12
NULL 3 154
NULL 4 241
NULL 5 512
Beverages NULL 513
Condiments NULL 114
Confections NULL 372

Note the presence of NULLs in the results. NULLs may be returned because a NULL was stored in the
underlying source, or because it is a placeholder in a row generated as an aggregate result. For example,
in the previous results, the first row displays NULL, NULL, 999. This represents a grand total row. The NULL
in the Category and Cust columns are placeholders because neither Category nor Cust take part in the
aggregation.

For more information, see Using GROUP BY with ROLLUP, CUBE, and GROUPING SETS in the SQL Server
2016 Technical Documentation:

Using GROUP BY with ROLLUP, CUBE, and GROUPING SETS

http://go.microsoft.com/fwlink/?LinkID=402782

CUBE and ROLLUP

Like GROUPING SETS, the CUBE and ROLLUP
subclauses also enable multiple groupings for
aggregating data. However, CUBE and ROLLUP do
not need you to specify each set of attributes to
group. Instead, given a set of columns, CUBE will
determine all possible combinations and output
groupings. ROLLUP creates combinations,
assuming the input columns represent a hierarchy.
Therefore, CUBE and ROLLUP can be thought of as
shortcuts to GROUPING SETS.

To use CUBE, append the keyword CUBE to the
GROUP BY clause and provide a list of columns to
group.

For example, to group on all combinations of columns Category and Cust, use the following syntax in
your query:

CUBE Example

SELECT Category, Cust, SUM(Qty) AS TotalQty
FROM Sales.CategorySales
GROUP BY CUBE(Category,Cust);

This will output groupings for the following combinations: (Category, Cust), (Cust, Category), (Cust),
(Category) and the aggregate on all empty ().

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-9

To use ROLLUP, append the keyword ROLLUP to the GROUP BY clause and provide a list of columns to
group. For example, to group on combinations of the Category, Subcategory, and Product columns, use
the following syntax in your query:

ROLLUP Example

SELECT Category, Subcategory, Product, SUM(Qty) AS TotalQty
FROM Sales.ProductSales
GROUP BY ROLLUP(Category,Subcategory, Product);

This will output groupings for the following combinations: (Category, Subcategory, Product), (Category,
Subcategory), (Category), and the aggregate on all empty (). Note that the order in which columns are
supplied is significant: ROLLUP assumes that the columns are listed in an order that expresses a hierarchy.

 Note: The example just given is for illustration only. Object names do not correspond to
the sample database supplied with the course.

GROUPING_ID

As you have seen, multiple grouping sets allow
you to combine different levels of aggregation in
the same query. You have also learned that SQL
Server will mark placeholder values with NULL if a
row does not take part in a grouping set. In a
query with multiple sets, however, how do you
know whether a NULL marks a placeholder or
comes from the underlying data? If it marks a
placeholder for a grouping set, which set? The
GROUPING_ID function can help you provide
additional information to answer these questions.

For example, consider the following query and
results, which contain numerous NULLs:

Grouping Sets with NULLs Example

SELECT Category, Cust, SUM(Qty) AS TotalQty
FROM Sales.CategorySales
GROUP BY
GROUPING SETS((Category),(Cust),())
ORDER BY Category, Cust;

The partial results:

Category Cust TotalQty
--------------- ----------- --------
NULL NULL 999
NULL 1 80
NULL 2 12
NULL 3 154
NULL 4 241
NULL 5 512
Beverages NULL 513
Condiments NULL 114
Confections NULL 372

At a glance, it might be difficult to determine why a NULL appears in a column.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-10 Pivoting and Grouping Sets

The GROUPING_ID function can be used to associate result rows with their grouping sets, as follows:

GROUPING_ID Example

SELECT
 GROUPING_ID(Category)AS grpCat,
 GROUPING_ID(Cust) AS grpCust,
 Category, Cust, SUM(Qty) AS TotalQty
FROM Sales.CategorySales
GROUP BY CUBE(Category,Cust);

The partial results:

grpCat grpCust Category Cust TotalQty
----------- ----------- --------------- ----------- -----------
0 0 Beverages 1 36
0 0 Condiments 1 44
1 0 NULL 1 80
0 0 Beverages 2 5
0 0 Confections 2 7
1 0 NULL 2 12
0 0 Beverages 3 105
0 0 Condiments 3 4
0 0 Confections 3 45
1 0 NULL 3 154
...
1 1 NULL NULL 999
0 1 Beverages NULL 513
0 1 Condiments NULL 114
0 1 Confections NULL 372

As you can see, the GROUPING_ID function returns a 1 when a row is aggregated as part of the current
grouping set and a 0 when it is not. In the first row, both grpCat and grpCust return 0; therefore, the row
is part of the grouping set (Category, Cust).

GROUPING_ID can also take multiple columns as inputs and return a unique integer bitmap, comprised of
combined bits, per grouping set. For more information, see the SQL Server 2016 Technical
Documentation:

GROUPING_ID (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402787

SQL Server also provides a GROUPING function, which accepts only one input to return a bit. For more
information, see GROUPING (Transact-SQL) in the SQL Server 2016 Technical Documentation:

GROUPING (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402788

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-11

Demonstration: Using Grouping Sets

In this demonstration, you will see how to:

 Use the CUBE and ROLLUP subclauses.

Demonstration Steps
Use the CUBE and ROLLUP Subclauses

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Select the code under the comment Step 8, and then click Execute.

10. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Question

You have the following query:

SELECT e.Department, e.Country, COUNT(EmployeeID) AS Staff
FROM HumanResources.Employees AS e

You want to find out how many staff are in each country and how many staff are in
each department. You also want to find out how many staff are in Sales in the US,
and so on, with all departments in all countries where the company operates.
Choose the most succinct grouping technique for this query:

Select the correct answer.

 GROUPING SETS

 CUBE

 ROLLUP

 You cannot return the required data with GROUPING. Instead, use multiple
queries and a UNION element.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-12 Pivoting and Grouping Sets

Lab: Pivoting and Grouping Sets
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been given a set of business requirements for data and you will write T-SQL
queries to retrieve the specified data from the databases. The business requests are analytical in nature. To
fulfill those requests, you will need to provide crosstab reports and multiple aggregates based on different
granularities. Therefore, you will need to use pivoting techniques and grouping sets in your T-SQL code.

Objectives
After completing this lab, you will be able to:

 Write queries that use the PIVOT operator.

 Write queries that use the UNPIVOT operator.

Write queries that use the GROUPING SETS, CUBE, and ROLLUP subclauses.

Estimated Time: 60 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use the PIVOT Operator

Scenario
The sales department would like to have a crosstab report, displaying the number of customers for each
customer group and country. They would like to display each customer group as a new column. You will
write different SELECT statements using the PIVOT operator to achieve the required result.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve the Number of Customers for a Specific Customer Group

3. Specify the Grouping Element for the PIVOT Operator

4. Use a Common Table Expression (CTE) to Specify the Grouping Element for the PIVOT Operator

5. Write a SELECT Statement to Retrieve the Total Sales Amount for Each Customer and Product Category

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab14\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-13

 Task 2: Write a SELECT Statement to Retrieve the Number of Customers for a Specific
Customer Group
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab14\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. The IT department has given you T-SQL code to generate a view named Sales.CustGroups, which
contains three pieces of information about customers—their IDs, the countries in which they are
located, and the customer group in which they have been placed. Customers are placed into one of
three predefined groups (A, B, or C).

3. Execute the provided T-SQL code:

CREATE VIEW Sales.CustGroups AS
SELECT
custid,
CHOOSE(custid % 3 + 1, N'A', N'B', N'C') AS custgroup,
country
FROM Sales.Customers;

4. Write a SELECT statement that will return the custid, custgroup, and country columns from the newly
created Sales.CustGroups view.

5. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab14\Solution\52 - Lab Exercise 1 - Task 1_1 Result.txt.

6. Modify the SELECT statement. Begin by retrieving the column country then use the PIVOT operator to
retrieve three columns based on the possible values of the custgroup column (values A, B, and C),
showing the number of customers in each group.

7. Execute the modified statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab14\53 - Lab Exercise 1 - Task 1_2 Result.txt.

 Task 3: Specify the Grouping Element for the PIVOT Operator
1. The IT department has provided T-SQL code to add two new columns—city and contactname—to the

Sales.CustGroups view. Execute the provided T-SQL code:

ALTER VIEW Sales.CustGroups AS
SELECT
custid,
CHOOSE(custid % 3 + 1, N'A', N'B', N'C') AS custgroup,
country,
city,
contactname
FROM Sales.Customers;

2. Copy the last SELECT statement in task 1 and execute it.

3. Is this result the same as that from the query in task 1? Is the number of rows retrieved the same?

4. To better understand the reason for the different results, modify the copied SELECT statement to
include the new city and contactname columns.

5. Execute the modified statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab14\54 - Lab Exercise 1 - Task 2 Result.txt.

6. Notice that this query returned the same number of rows as the previous SELECT statement. Why did
you get the same result with and without specifying the grouping columns for the PIVOT operator?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-14 Pivoting and Grouping Sets

 Task 4: Use a Common Table Expression (CTE) to Specify the Grouping Element for
the PIVOT Operator
1. Define a CTE named PivotCustGroups based on a query that retrieves the custid, country, and

custgroup columns from the Sales.CustGroups view. Write a SELECT statement against the CTE, using
a PIVOT operator to retrieve the same result as in task 1.

2. Execute the written T-SQL code and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab14\55 - Lab Exercise 1 - Task 3 Result.txt.

3. Is this result the same as the one returned by the last query in task 1? Can you explain why?

4. Why do you think it is beneficial to use the CTE when using the PIVOT operator?

 Task 5: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer and Product Category
1. For each customer, write a SELECT statement to retrieve the total sales amount for all product

categories, displaying each as a separate column. Here is how to accomplish this task:

o Create a CTE named SalesByCategory to retrieve the custid column from the Sales.Orders table as
a calculated column, based on the qty and unitprice columns and the categoryname column
from the table Production.Categories. Filter the result to include only orders in the year 2008.

o You will need to JOIN tables Sales.Orders, Sales.OrderDetails, Production.Products, and
Production.Categories.

o Write a SELECT statement against the CTE that returns a row for each customer (custid) and a
column for each product category, with the total sales amount for the current customer and
product category.

o Display the following product categories: Beverages, Condiments, Confections, [Dairy Products],
[Grains/Cereals], [Meat/Poultry], Produce, and Seafood.

2. Execute the complete T-SQL code (the CTE and the SELECT statement).

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab14\56 - Lab Exercise 1 - Task 4 Result.txt.

Results: After this exercise, you should be able to use the PIVOT operator in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-15

Exercise 2: Writing Queries That Use the UNPIVOT Operator

Scenario
You will now create multiple rows by turning columns into rows.

The main tasks for this exercise are as follows:

1. Create and Query the Sales.PivotCustGroups View

2. Write a SELECT Statement to Retrieve a Row for Each Country and Customer Group

3. Remove the Created Views

 Task 1: Create and Query the Sales.PivotCustGroups View
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Execute the provided T-SQL code to generate the Sales.PivotCustGroups view:

CREATE VIEW Sales.PivotCustGroups AS
WITH PivotCustGroups AS
(
SELECT
custid,
country,
custgroup
FROM Sales.CustGroups
)
SELECT
country,
p.A,
p.B,
p.C
FROM PivotCustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

3. Write a SELECT statement to retrieve the country, A, B, and C columns from the Sales.PivotCustGroups
view.

4. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab14\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve a Row for Each Country and Customer
Group
1. Write a SELECT statement against the Sales.PivotCustGroups view that returns the following:

o A row for each country and customer group.

o The column country.

o Two new columns—custgroup and numberofcustomers. The custgroup column should hold the
names of the source columns A, B, and C as character strings, and the numberofcustomers
column should hold their values (that is, number of customers).

2. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab14\63 - Lab Exercise 2 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-16 Pivoting and Grouping Sets

 Task 3: Remove the Created Views
1. Remove the created views by executing the provided T-SQL code:

DROP VIEW Sales.CustGroups;
DROP VIEW Sales.PivotCustGroups;

2. Execute this code exactly as written, inside a query window.

Results: After this exercise, you should know how to use the UNPIVOT operator in your T-SQL statements.

Exercise 3: Writing Queries That Use the GROUPING SETS, CUBE, and
ROLLUP Subclauses

Scenario
You have to prepare SELECT statements to retrieve a unified result set with aggregated data for different
combinations of columns. First, you have to retrieve the number of customers for all possible
combinations of the country and city columns. Instead of using multiple T-SQL statements with a GROUP
BY clause and then unifying them with the UNION ALL operator, you will use a more elegant solution
using the GROUPING SETS subclause of the GROUP BY clause.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses the GROUPING SETS Subclause to Return the Number of
Customers for Different Grouping Sets

2. Write a SELECT Statement That Uses the CUBE Subclause to Retrieve Grouping Sets Based on Yearly,
Monthly, and Daily Sales Values

3. Write the Same SELECT Statement Using the ROLLUP Subclause

4. Analyze the Total Sales Value by Year and Month

 Task 1: Write a SELECT Statement That Uses the GROUPING SETS Subclause to Return
the Number of Customers for Different Grouping Sets
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table and retrieve the country column, the city
column, and a calculated column noofcustomers as a count of customers. Retrieve multiple grouping
sets based on the country and city columns, the country column, the city column, and a column with
an empty grouping set.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab14\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses the CUBE Subclause to Retrieve
Grouping Sets Based on Yearly, Monthly, and Daily Sales Values
1. Write a SELECT statement against the view Sales.OrderValues and retrieve these columns:

o Year of the orderdate column as orderyear.

o Month of the orderdate column as ordermonth.

o Day of the orderdate column as orderday.

o Total sales value using the val column as salesvalue.

o Return all possible grouping sets based on the orderyear, ordermonth, and orderday columns.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 14-17

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab14\73 - Lab Exercise 3 - Task 2 Result.txt. Notice the total
number of rows in your results.

 Task 3: Write the Same SELECT Statement Using the ROLLUP Subclause
1. Copy the previous query and modify it to use the ROLLUP subclause instead of the CUBE subclause.

2. Execute the modified query and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab14\74 - Lab Exercise 3 - Task 3 Result.txt. Notice the number of rows
in your results.

3. What is the difference between the ROLLUP and CUBE subclauses?

4. Which is the more appropriate subclause to use in this example?

 Task 4: Analyze the Total Sales Value by Year and Month
1. Write a SELECT statement against the Sales.OrderValues view and retrieve these columns:

o Calculated column with the alias groupid (use the GROUPING_ID function with the order year
and order month as the input parameters).

o Year of the orderdate column as orderyear.

o Month of the orderdate column as ordermonth.

o Total sales value using the val column as salesvalue.

o Since year and month form a hierarchy, return all interesting grouping sets based on the
orderyear and ordermonth columns and sort the result by groupid, orderyear, and ordermonth.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab14\75 - Lab Exercise 3 - Task 4 Result.txt.

3. Close SQL Server Management Studio without saving any changes.

Results: After this exercise, you should have an understanding of how to use the GROUPING SETS, CUBE,
and ROLLUP subclauses in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
14-18 Pivoting and Grouping Sets

Module Review and Takeaways
In this module, you have learned how to:

 Write queries that pivot and unpivot result sets.

 Write queries that specify multiple groupings with grouping sets.

Review Question(s)
Question: Once a dataset has been pivoted with aggregation, can the original detail rows be
restored with an unpivot operation?

Question: What are the possible sources of NULLs returned by a query using grouping sets
to create aggregations?

Question: Which subclause infers a hierarchy of columns to create meaningful grouping
sets?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-1

Module 15
Executing Stored Procedures

Contents:
Module Overview 15-1

Lesson 1: Querying Data with Stored Procedures 15-2

Lesson 2: Passing Parameters to Stored Procedures 15-5

Lesson 3: Creating Simple Stored Procedures 15-9

Lesson 4: Working with Dynamic SQL 15-12

Lab: Executing Stored Procedures 15-15

Module Review and Takeaways 15-21

Module Overview
In addition to writing stand-alone SELECT statements to return data from Microsoft® SQL Server®, you
may need to execute T-SQL procedures created by an administrator or developer and stored in a
database. This module will show you how to execute stored procedures, including how to pass parameters
into procedures written to accept them. This module will also show you how basic stored procedures are
created, providing a better understanding of what happens on the server when you execute one. Finally,
this module will show you how to generate dynamic SQL statements, which is often a requirement in
development environments where stored procedures are not being used.

Objectives
After completing this module, you will be able to:

 Return results by executing stored procedures.

 Pass parameters to procedures.

 Create simple stored procedures that encapsulate a SELECT statement.

 Construct and execute dynamic SQL with EXEC and sp_executesql.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-2 Executing Stored Procedures

Lesson 1
Querying Data with Stored Procedures

Many reporting and development tools offer the choice between writing and executing specific T-SQL
SELECT statements, and choosing from queries saved as stored procedures in SQL Server. While stored
procedures can encapsulate most T-SQL operations, including system administration tasks, this lesson will
focus on using stored procedures to return result sets, as an alternative to writing your own SELECT
statements.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe stored procedures and their use.

 Write T-SQL statements that execute stored procedures to return data.

Examining Stored Procedures

Stored procedures are named collections of T-SQL
statements created with the CREATE PROCEDURE
command. They encapsulate many server and
database commands, and can provide a consistent
application programming interface (API) to client
applications using input parameters, output
parameters, and return values.

Because this course focuses primarily on retrieving
results from databases through SELECT
statements, this lesson will only cover the use of
stored procedures that encapsulate SELECT
queries. However, it might be useful to note that
stored procedures can also include INSERT, UPDATE, DELETE, and other valid T-SQL commands. They can
also be used to provide an interface layer between a database and an application. Using such a layer,
developers and administrators can ensure that all activity is performed by trusted code modules that
validate input and handle errors appropriately. Elements of such an API would include:

 Views or table-valued functions as wrappers for simple retrieval.

 Stored procedures for retrieval when complex validation or manipulation is required.

 Stored procedures for inserting, updating, or deleting rows.

In addition to encapsulating code and making it easier to maintain, this approach provides a security
layer. Users may be granted access to objects rather than the underlying tables themselves. This ensures
that users might only use the provided application to access data rather than other tools.

Stored procedures also offer other benefits, including network and database engine performance
improvements. See the course 20762B: Developing Microsoft SQL Server Databases for additional
information on these benefits and more details on creating and using stored procedures.

For more information, see the SQL Server 2016 Technical Documentation:

Stored Procedures (Database Engine)

http://aka.ms/sshz88

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-3

Executing Stored Procedures

Earlier in this course, you learned how to execute
system stored procedures. The same mechanism
exists for executing user procedures. Therefore,
some of the following guidelines are provided for
review:

 To execute a stored procedure, use the
EXECUTE command or its shortcut, EXEC,
followed by the two-part name of the
procedure. Your reporting tool may provide a
graphical interface for selecting procedures by
name, which will invoke the EXEC command
for you.

 If the procedure accepts parameters, pass them as name-value pairs. For example, if the parameter is
called custid and the value to pass is 5, use this form: @custid=5. Multiple parameters are separated
with commas.

 Pass parameters of the appropriate data type to the stored procedure. For example, if a procedure
accepts an NVARCHAR, pass in the Unicode character string format: N'string'.

 If the procedure encapsulates a simple SELECT statement, no additional elements are needed to
execute it. If the procedure includes an OUTPUT parameter, additional steps will be required. See the
lesson on OUTPUT parameters later in this module.

 Note: You may see sample code that omits the use of the EXEC command before the name
of a procedure. While this works on the first line of a batch (or in the only line of a one-line
batch), this is not a best practice. Always use EXECUTE or EXEC to invoke stored procedures.

For more information, see the SQL Server 2016 Technical Documentation:

Execute a Stored Procedure

http://aka.ms/Dyplvh

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-4 Executing Stored Procedures

Demonstration: Querying Data with Stored Procedures

In this demonstration, you will see how to:

 Use stored procedures.

Demonstration Steps
Use Stored Procedures

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod15\Setup.cmd as an administrator.

3. At the command prompt, type y, and press Enter.

4. Wait until the script completes, and then press Enter.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod15\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Select the code under the comment Step 6, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query, which is intended to call a stored procedure called
HumanResources.FilteredSkills:

EXEC HumanResources.FilteredSkills

 departmentid = @1, skilllevel = @4;

Your query returns an error. What should you do to resolve the error?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-5

Lesson 2
Passing Parameters to Stored Procedures

Procedures can be written to accept parameters to provide greater flexibility. Most parameters are written
as input parameters, which accept values passed in the EXEC statement, and are used inside the
procedure. Some procedures might also return values in the form of OUTPUT parameters, which require
additional handling by the client when invoking the procedure. You will learn how to pass input and
return output parameters in this lesson.

Lesson Objectives
After completing this lesson, you will be able to:

 Write EXECUTE statements that pass input parameters to stored procedures.

 Write T-SQL batches that prepare output parameters and execute stored procedures.

Passing Input Parameters to Stored Procedures

Stored procedures can be written to accept input
parameters to provide greater flexibility.
Procedures declare their parameters by name and
data type in the header of the CREATE
PROCEDURE statement, and then use the
parameters as local variables in the body of the
procedure. For example, an input parameter might
be used in the predicate of a WHERE clause or as
the value in a TOP operator.

To call a stored procedure and pass parameters,
use the following syntax:

Stored Procedure with Parameters Syntax

EXEC <schema_name>.<procedure_name> @<parameter_name> = <VALUE> [, ...]

For example, if you have a procedure called ProductsBySuppliers stored in the Production schema and it
accepts a parameter named supplierid, you would use the following:

Stored Procedure with Parameters Example

EXEC Production.ProductsBySuppliers @supplierid = 1;

To pass multiple input parameters, separate the name-value pairs with commas, as in this example:

Stored Procedure with Multiple Parameters Example

EXEC Sales.FindOrder @empid = 1, @custid=1;

 Note: The previous example refers to a procedure that does not exist in the sample
database for the course. Other examples in the demonstration script for this lesson can be
executed against procedures in the sample TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-6 Executing Stored Procedures

If you have not been provided with the names and data types of the parameters for the procedures you
will be executing, you can typically discover them yourself, assuming you have permissions to do so. SQL
Server Management Studio (SSMS) displays a parameters folder below each stored procedure that lists the
names, types, and direction (input/output) of each defined parameter. Alternatively, you can query a
system catalog view such as sys.parameters to retrieve parameter definitions. For an example, see the
demonstration script provided for this lesson.

For more information about passing parameters to stored procedures, see the SQL Server 2016 Technical
Documentation:

Specify Parameters

http://aka.ms/R5zjjo

Working with OUTPUT Parameters

So far in this module, you have seen procedures
that return results through an embedded SELECT
statement. SQL Server also gives you the capability
to return a scalar value through a parameter
marked as an OUTPUT parameter. This has several
benefits: a procedure can return a result set via a
SELECT statement and provide an additional value,
such as a row count, to the calling application. For
some specific scenarios where only a single value
is desired, a procedure that returns an OUTPUT
parameter can perform faster than a procedure
that returns the scalar value in a result set.

There are two aspects to working with stored procedures using output parameters:

1. The procedure itself must mark a parameter with the OUTPUT keyword in the parameter declaration.

See the following example:

Creating a Stored Procedure with an OUTPUT Parameter Example

CREATE PROCEDURE Sales.GetCustPhone
(@custid AS INT, @phone AS nvarchar(24) OUTPUT)
AS ...

2. The T-SQL batch that calls the procedure must provide additional code to handle the output
parameter. The code includes a local variable that acts as a container for the value that will be
returned by the procedure when it executes. The parameter is added to the EXEC statement, marked
with the OUTPUT keyword. After the stored procedure has completed, the variable will contain the
value of the output parameter set inside the procedure.

The following example declares a local variable to be passed as the output parameter, executes a
procedure, and then examines the variable with a SELECT statement:

Executing a Stored Procedure with OUTPUT Parameter Example

DECLARE @customerid INT =5, @phonenum NVARCHAR(24);
EXEC Sales.GetCustPhone @custid=@customerid, @phone=@phonenum OUTPUT;
SELECT @phonenum AS phone;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-7

Demonstration: Passing Parameters to Stored Procedures

In this demonstration, you will see how to:

 Pass parameters to a stored procedure.

Demonstration Steps
Pass Parameters to a Stored Procedure

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. In Object Explorer, expand Databases, expand AdventureWorks, expand Programmability, and
then expand Stored Procedures.

4. Expand any procedure, expand Parameters, and then point out list of parameters, data type and
direction.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8, and then click Execute.

11. Select the code under the comment Step 9, and then click Execute.

12. Select the code under the comment Step 10, and then click Execute.

13. Select the code under the comment Step 11, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-8 Executing Stored Procedures

Check Your Knowledge

Question

A DBA has created a stored procedure in the HumanResources database by
executing the following:

CREATE PROCEDURE HumanResources.SkillsForEmployee (@empid AS
INT)
AS
 SELECT e.ID, e.FirstName, e.LastName, s.SkillName, s.Level
 FROM HumanResources.Employees AS e
 JOIN HumanResources.Skills AS s ON e.ID = s.EmployeeID
 WHERE e.ID = @empid
GO

You call the procedure with the following statement:

EXEC HumanResources.SkillsForEmployee @empid = N'24'

Your query returns an error. What should you do to fix your query?

Select the correct answer.

 Pass the @empid parameter as an integer instead of an nvarchar.

 Move the position of the “@” symbol to the correct place.

 Add a value for the e.ID parameter to your query.

 Instead of using the stored procedure, execute your own SELECT query.

 Add the OUTPUT keyword to the @empid parameter.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-9

Lesson 3
Creating Simple Stored Procedures

To better understand how to work with stored procedures written by developers and administrators, it is
useful to learn how they are created. In this lesson, you will see how to write a stored procedure that
returns a result set from an encapsulated SELECT statement.

Lesson Objectives
After completing this lesson, you will be able to:

 Use the CREATE PROCEDURE statement to write a stored procedure.

 Create a stored procedure that accepts input parameters.

Creating Procedures to Return Rows

Stored procedures in SQL Server are used for
many tasks, including system configuration and
maintenance, in addition to data manipulation. As
previously mentioned, there are advantages to
creating procedures to standardize access to data.
To do that, you can create a stored procedure that
is a wrapper for a SELECT statement, which might
include any of the data manipulations you have
already learned in this course.

The following example creates a procedure that
aggregates order information:

Example of a Procedure That Returns Rows

CREATE PROCEDURE Sales.OrderSummaries
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate AS date)AS orderdate,
 SUM(OD.qty) AS quantity,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS ordervalue
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY O.orderid, O.custid, O.empid, O.shipperid, O.orderdate;
GO

To execute this procedure, use the EXECUTE or EXEC command before the procedure's two-part name:

Executing a Procedure That Returns Rows

EXEC [Sales].[OrderSummaries];

A partial result:

orderid custid empid shipperid orderdate quantity ordervalue
------- ----- ------ --------- ---------- -------- ----------
10248 85 5 3 2006-07-04 27 440.00
10249 79 6 1 2006-07-05 49 1863.40
10250 34 4 2 2006-07-08 60 1552.60

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-10 Executing Stored Procedures

To modify the design of the procedure, such as to change the columns in the SELECT list or add an
ORDER BY clause, use the ALTER PROCEDURE (abbreviated ALTER PROC) statement and supply the full
new code for the procedure.

See the following example:

Altering a Stored Procedure That Returns Rows

ALTER PROCEDURE Sales.OrderSummaries
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate AS date)AS orderdate,
 SUM(OD.qty) AS quantity,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS ordervalue
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY O.orderid, O.custid, O.empid, O.shipperid, O.orderdate
ORDER BY orderid, orderdate;

Changing the procedure with ALTER PROCEDURE is preferable to using DROP PROCEDURE to delete it,
and then using CREATE PROCEDURE to rebuild it with a new definition. By altering it in place, security
permissions do not need to be reassigned.

For more information on modifying stored procedures, see the SQL Server 2016 Technical
Documentation:

Modify a Stored Procedure

http://aka.ms/Bn33te

Creating Procedures That Accept Parameters

A stored procedure that accepts input parameters
provides added flexibility to its use. To define
input parameters in your own stored procedures,
declare them in the header of the CREATE
PROCEDURE statement, then refer to them in the
body of the stored procedure. Define the
parameters with an @ prefix in the name, then
assign them a data type.

 Note: Parameters may also be assigned
default values, including NULL.

See the following example:

Syntax of a Stored Procedure That Accepts Parameters

CREATE PROCEDURE <schema>.<procedure_name>
(@<parameter_name> AS <data_type>)
AS ...

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-11

For example, the following procedure will accept the empid parameter as an integer and pass it to the
WHERE clause to be used as a filter:

Example of a Stored Procedure That Accepts Parameters

CREATE PROCEDURE Sales.OrderSummariesByEmployee
(@empid AS int)
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate AS date)AS orderdate,
 SUM(OD.qty) AS quantity,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS ordervalue
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE empid = @empid
GROUP BY O.orderid, O.custid, O.empid, O.shipperid, O.orderdate
ORDER BY orderid, orderdate;
GO

To call the procedure, use EXEC and pass in a value:

Executing a Stored Procedure That Accepts Parameters

EXEC Sales.OrderSummariesByEmployee @empid = 5;

Demonstration: Creating Simple Stored Procedures

In this demonstration, you will see how to:

 Create a stored procedure.

Demonstration Steps
Create a Stored Procedure

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Keep SQL Server Management Studio open for the next demonstration.

Question: The HumanResources.SkillLevelsForDepartment stored procedure is a popular
procedure that ensures skills data can be examined in an anonymous form. You have been
asked to add a new parameter to the stored procedure. Why should you use ALTER
PROCEDURE instead of DROP PROCEDURE followed by CREATE PROCEDURE.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-12 Executing Stored Procedures

Lesson 4
Working with Dynamic SQL

In organizations where creating parameterized stored procedures is not supported, you might need to
execute T-SQL code constructed in your application at runtime. Dynamic SQL provides a mechanism for
constructing a character string that is passed to SQL Server, interpreted as a command, and executed.

In this lesson, you will learn how to pass dynamic SQL queries to SQL Server, using the EXEC statement
and the system procedure sp_executesql.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how T-SQL can be dynamically constructed.

 Write queries that use dynamic SQL.

Constructing Dynamic SQL

Dynamic SQL provides a mechanism for
constructing a character string that is passed to
SQL Server, interpreted as a command, and
executed. Why would you want to do this? You
might not know all the values necessary for your
query until execution time—such as taking the
results of one query and using them as inputs to
another (for example, a pivot query) or an
administrative maintenance routine that accepts
object names at runtime.

T-SQL supports two methods for building dynamic
SQL expressions—using the EXECUTE command
(or its shortcut EXEC) with a string or invoking the system-stored procedure sp_executesql:

1. The EXECUTE or EXEC command supports the use of a string as an input in the following form, but
does not support parameters, which need to be combined in the input string:

The following example shows how individual strings may be concatenated to form a command:

Dynamic SQL Example

DECLARE @sqlstring AS VARCHAR(1000);
SET @sqlstring='SELECT empid,' + ' lastname '+' FROM HR.employees;'
EXEC(@sqlstring);
GO

2. The system-stored procedure sp_executesql supports string input for the query, in addition to input
parameters.

The following example shows a simple string with a parameter passed to sp_executesql:

Passing Dynamic SQL with sp_executesql

DECLARE @sqlcode AS NVARCHAR(256) = N'SELECT GETDATE() AS dt';
EXEC sys.sp_executesql @statement = @sqlcode;
GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-13

It is important to know that EXEC cannot accept parameters and does not promote query plan reuse.
Therefore, it is preferred that you use sp_executesql for passing dynamic SQL to SQL Server.

For more information, see the Using EXECUTE with a Character String in the EXECUTE (Transact-SQL) topic
in the SQL Server 2016 Technical Documentation:

EXECUTE (Transact-SQL)

http://aka.ms/Fors3z

For more information on using sp_executesql, see the next topic in this lesson.

Writing Queries with Dynamic SQL

In the previous topic, you learned that there were
two methods for executing dynamic SQL. This
topic focuses on the preferred method, calling
sp_executesql.

Constructing and executing dynamic SQL with
sp_executesql is preferred over using EXEC
because EXEC cannot take parameters at runtime.
In addition, sp_executesql generates execution
plans that are more likely to be reused than EXEC.
Perhaps most important, though, using
sp_executesql can provide a line of defense
against SQL injection attacks, by defining data
types for parameters.

To use sp_executesql, provide a character string value that contains the query code as a parameter, as in
the following syntax example:

sp_executesql Syntax Example

DECLARE @sqlcode AS NVARCHAR(256) = N'<code_to_run>';
EXEC sys.sp_executesql @statement = @sqlcode;
GO

The following example uses sp_executesql to execute a simple SELECT query:

sp_executesql Example

DECLARE @sqlcode AS NVARCHAR(256) =
 N'SELECT GETDATE() AS dt';
EXEC sys.sp_executesql @statement = @sqlcode;
GO

To use sp_executesql with parameters, provide the query code, in addition to two additional parameters:

 @stmt, a Unicode string variable to hold the query text.

 @params, a Unicode string variable that holds a comma-separated list of parameter names and data
types.

In addition to these two variables, you will declare and assign variables to hold the values for the
parameters you wish to pass in to sp_executesql.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-14 Executing Stored Procedures

The following example uses sp_executesql to dynamically generate a query that returns an employee's
information based on an empid value:

Using sp_executesql with Parameters

DECLARE @sqlstring AS NVARCHAR(1000);
DECLARE @empid AS INT;
SET @sqlstring=N'SELECT empid, lastname FROM HR.employees WHERE empid=@empid;'
EXEC sys.sp_executesql @statement = @sqlstring, @params=N'@empid AS INT',
 @empid = 5;

The result:

empid lastname
----- --------
5 Buck

 Note: sp_executesql can also use output parameters marked with the OUTPUT keyword,
which you learned about earlier in this module.

For a discussion about query plan reuse and more coverage of sp_executesql, see the SQL Server 2016
Technical Documentation:

Using sp_executesql

http://go.microsoft.com/fwlink/?LinkID=402795

Demonstration: Working with Dynamic SQL

In this demonstration, you will see how to:

 Execute dynamic SQL queries.

Demonstration Steps
Execute Dynamic SQL Queries

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Close SQL Server Management Studio without saving any files.

Question: You want to execute dynamic SQL with a single parameter named @skillname. In
addition to the parameter itself, what other parameters should you send to sp_executesql?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-15

Lab: Executing Stored Procedures
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been given a set of business requirements for data and will write T-SQL
queries to retrieve the specified data from the databases. You have learned that some of the data can only
be accessed via stored procedures instead of directly querying the tables. Additionally, some of the
procedures require parameters in order to interact with them.

Objectives
After completing this lab, you will be able to:

 Use the EXECUTE statement to invoke stored procedures.

 Pass parameters to stored procedures.

 Execute system stored procedures.

Estimated Time: 30 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Using the EXECUTE Statement to Invoke Stored Procedures

Scenario
The IT department has supplied T-SQL code to create a stored procedure to retrieve the top 10 customers
by the total sales amount. You will practice how to execute a stored procedure.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Create and Execute a Stored Procedure

3. Modify the Stored Procedure and Execute It

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab15\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-16 Executing Stored Procedures

 Task 2: Create and Execute a Stored Procedure
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab15\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. Execute the provided T-SQL code to create the stored procedure Sales.GetTopCustomers:

CREATE PROCEDURE Sales.GetTopCustomers AS
SELECT TOP(10)
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC;

3. Write a T-SQL statement to execute the created procedure.

4. Execute the T-SQL statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab15\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

5. What is the difference between the previous T-SQL code and this one?

6. If some applications are using the stored procedure from task 1, would they still work properly after
the changes you have applied in task 2?

 Task 3: Modify the Stored Procedure and Execute It
1. The IT department has changed the stored procedure from task 1 and supplied you with T-SQL code

to apply the required changes. Execute the provided T-SQL code:

ALTER PROCEDURE Sales.GetTopCustomers AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

2. Write a T-SQL statement to execute the modified stored procedure.

3. Execute the T-SQL statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab15\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

Results: After this exercise, you should be able to invoke a stored procedure using the EXECUTE
statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-17

Exercise 2: Passing Parameters to Stored Procedures

Scenario
The IT department supplied you with additional modifications of the stored procedure in task 1. The
modified stored procedure lets you pass parameters that specify the order year and number of customers
to retrieve. You will practice how to execute the stored procedure with a parameter.

The main tasks for this exercise are as follows:

1. Execute a Stored Procedure with a Parameter for Order Year

2. Modify the Stored Procedure to Have a Default Value for the Parameter

3. Pass Multiple Parameters to the Stored Procedure

4. Return the Result from a Stored Procedure Using the OUTPUT Clause

 Task 1: Execute a Stored Procedure with a Parameter for Order Year
1. Open the SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Execute the provided T-SQL code to modify the Sales.GetTopCustomers stored procedure to include a
parameter for order year (@orderyear):

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

3. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure for the year
2007.

4. Execute the T-SQL statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab15\Solution\62 - Lab Exercise 2 - Task 1_1 Result.txt.

5. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure for the year
2008.

6. Execute the T-SQL statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab15\Solution\63 - Lab Exercise 2 - Task 1_2 Result.txt.

7. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure without a
parameter.

8. Execute the T-SQL statement. What happened? What is the error message?

9. If an application was designed to use the exercise 1 version of the stored procedure, would the
modification made to the stored procedure in this exercise impact the usability of that application?
Please explain.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-18 Executing Stored Procedures

 Task 2: Modify the Stored Procedure to Have a Default Value for the Parameter
1. Execute the provided T-SQL code to modify the Sales.GetTopCustomers stored procedure:

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int = NULL
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear OR @orderyear IS NULL
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

2. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure without a
parameter.

3. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\64 - Lab Exercise 2 - Task 2 Result.txt.

4. If an application was designed to use the Exercise 1 version of the stored procedure, would the
change made to the stored procedure in this task impact the usability of that application? How does
this change influence the design of future applications?

 Task 3: Pass Multiple Parameters to the Stored Procedure
1. Execute the provided T-SQL code to add the parameter @n to the Sales.GetTopCustomers stored

procedure. You use this parameter to specify how many customers you want retrieved. The default
value is 10.

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int = NULL,
@n int = 10
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear OR @orderyear IS NULL
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT @n ROWS ONLY;

2. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure without any
parameters.

3. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\65 - Lab Exercise 2 - Task 3_1 Result.txt.

4. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure for order year
2008 and five customers.

5. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\66 - Lab Exercise 2 - Task 3_2 Result.txt.

6. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure for the order
year 2007.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-19

7. Execute the T-SQL statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab15\Solution\67 - Lab Exercise 2 - Task 3_3 Result.txt.

8. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure to retrieve 20
customers.

9. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\68 - Lab Exercise 2 - Task 3_4 Result.txt.

10. Do the applications using the stored procedure need to be changed because another parameter was
added?

 Task 4: Return the Result from a Stored Procedure Using the OUTPUT Clause
1. Execute the provided T-SQL code to modify the Sales.GetTopCustomers stored procedure to return

the customer contact name based on a specified position in a ranking of total sales, which is provided
by the parameter @customerpos. The procedure also includes a new parameter named
@customername, which has an OUTPUT option:

ALTER PROCEDURE Sales.GetTopCustomers
@customerpos int = 1,
@customername nvarchar(30) OUTPUT
AS
SET @customername = (
SELECT
c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY SUM(o.val) DESC
OFFSET @customerpos - 1 ROWS FETCH NEXT 1 ROW ONLY
);

2. The IT department also supplied you with T-SQL code to declare the new variable
@outcustomername. You will use this variable as an output parameter for the stored procedure.

3. DECLARE @outcustomername nvarchar(30);

4. Write an EXECUTE statement to invoke the Sales.GetTopCustomers stored procedure and retrieve the
first customer.

5. Write a SELECT statement to retrieve the value of the output parameter @outcustomername.

6. Execute the batch of T-SQL code consisting of the provided DECLARE statement, the written EXECUTE
statement, and the written SELECT statement.

7. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab15\Solution\69 - Lab Exercise 2 - Task 4 Result.txt.

Results: After this exercise, you should know how to invoke stored procedures that have parameters.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
15-20 Executing Stored Procedures

Exercise 3: Executing System Stored Procedures

Scenario
In the previous module, you learned how to query the system catalog. Now you will practice how to
execute some of the most commonly used system-stored procedures to retrieve information about tables
and columns.

The main tasks for this exercise are as follows:

1. Execute the Stored Procedure sys.sp_help

2. Execute the Stored Procedure sys.sp_helptext

3. Execute the Stored Procedure sys.sp_columns

4. Drop the Created Stored Procedure

 Task 1: Execute the Stored Procedure sys.sp_help
1. Open the SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write an EXECUTE statement to invoke the sys.sp_help stored procedure without a parameter.

3. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\72 - Lab Exercise 3 - Task 1_1 Result.txt.

4. Write an EXECUTE statement to invoke the sys.sp_help stored procedure for a specific table by
passing the parameter Sales.Customers.

5. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\73 - Lab Exercise 3 - Task 1_2 Result.txt.

 Task 2: Execute the Stored Procedure sys.sp_helptext
1. Write an EXECUTE statement to invoke the sys.sp_helptext stored procedure, passing the

Sales.GetTopCustomers stored procedure as a parameter.

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\74 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Execute the Stored Procedure sys.sp_columns
1. Write an EXECUTE statement to invoke the sys.sp_columns stored procedure for the table

Sales.Customers. You will have to pass two parameters: @table_name and @table_owner.

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab15\Solution\75 - Lab Exercise 3 - Task 3 Result.txt.

 Task 4: Drop the Created Stored Procedure
 Execute the provided T-SQL statement to remove the Sales.GetTopCustomers stored procedure:

DROP PROCEDURE Sales.GetTopCustomers;

Results: After this exercise, you should have a basic knowledge of invoking different system-stored
procedures.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 15-21

Module Review and Takeaways
In this module, you have learned how to:

 Return results by executing stored procedures.

 Pass parameters to procedures.

 Create simple stored procedures that encapsulate a SELECT statement.

 Construct and execute dynamic SQL with EXEC and sp_executesql.

Review Question(s)
Question: What benefits do stored procedures provide for data retrieval that views do not?

Question: What form should parameter and value pairs take when passed to a stored
procedure in the EXECUTE statement?

Question: Which method for constructing dynamic SQL allows parameters to be passed at
runtime?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-1

Module 16
Programming with T-SQL

Contents:
Module Overview 16-1

Lesson 1: T-SQL Programming Elements 16-2

Lesson 2: Controlling Program Flow 16-8

Lab: Programming with T-SQL 16-12

Module Review and Takeaways 16-18

Module Overview
In addition to the data retrieval and manipulation statements you have learned about in this course,

T-SQL provides some basic programming features, such as variables, control-of-flow elements, and
conditional execution. In this module, you will learn how to enhance your T-SQL code with programming
elements.

Objectives
After completing this module, you will be able to:

 Describe the language elements of T-SQL used for simple programming tasks.

 Describe batches and how they are handled by SQL Server.

 Declare and assign variables and synonyms.

 Use IF and WHILE blocks to control program flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-2 Programming with T-SQL

Lesson 1
T-SQL Programming Elements

With a few exceptions, most of your work with T-SQL in this course so far has focused on single-statement
structures, such as SELECT statements. As you move from executing code objects to creating them, you
will need to understand how multiple statements interact with the server on execution. You will also need
to be able to temporarily store values. For example, you might need to temporarily store values that will
be used as parameters in stored procedures. Finally, you might want to create aliases, or pointers, to
objects so that you can reference them by a different name or from a different location than where they
are defined. This lesson will cover each of these topics.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how Microsoft® SQL Server® treats collections of statements as batches.

 Create and submit batches of T-SQL code for execution by SQL Server.

 Describe how SQL Server stores temporary objects as variables.

 Write code that declares and assigns variables.

 Create and invoke synonyms.

Introducing T-SQL Batches

T-SQL batches are collections of one or more T-SQL
statements that are submitted to SQL Server by a client as
a single unit. SQL Server operates on all the statements in
a batch at the same time when parsing, optimizing, and
executing the code.

If you are a report writer tasked primarily with writing
SELECT statements and not procedures, it is still important
to understand batch boundaries, because they will affect
your work with variables and parameters in stored
procedures and other routines. As you will see, you must declare a variable in the same batch in which it is
referenced. It is important, therefore, to recognize what is contained in a batch.

Batches are delimited by the client application—how you mark the end of a batch will depend on the
settings of your client. For example, the default batch terminator in SQL Server Management Studio
(SSMS) is the keyword GO. This is not a T-SQL keyword, but is one recognized by SSMS to indicate the end
of a batch.

When working with T-SQL batches, there are two important considerations to keep in mind:

 Batches are boundaries for variable scope, which means that a variable defined in one batch may only
be referenced by other code in the same batch.

 Some statements, typically data definition statements such as CREATE VIEW, may not be combined
with others in the same batch. There is a complete list in the SQL Server 2016 Technical
Documentation, where you will also find additional reading.

Batches

http://go.microsoft.com/fwlink/?LinkID=402796

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-3

Working with Batches

As you have seen, batches are collections of T-SQL
statements submitted as a unit to SQL Server for
parsing, optimization, and execution.
Understanding how batches are parsed will be
useful in identifying error messages and behavior.

When a batch is submitted by a client (such as
when you press the Execute button in SSMS), the
batch is parsed for syntax errors by the SQL Server
engine. Any errors found will cause the entire
batch to be rejected; there will be no partial
execution of statements within the batch.

If the batch passes the syntax check, then SQL
Server proceeds with additional steps—resolving object names, checking permissions, and optimizing the
code for execution. Once this process completes and execution begins, statements succeed or fail
individually. This is an important contrast to syntax checking. If a runtime error occurs on one line, the
next line may be executed, unless you've added error handling to the code.

 Note: Error handling will be covered in a later module.

For example, the following batch contains a syntax error in the first line:

Batch With Error

INSERT INTO dbo.t1 VALUE(1,2,N'abc');
INSERT INTO dbo.t1 VALUES(2,3,N'def');
GO

Upon submitting the batch, the following error is returned:

Msg 102, Level 15, State 1, Line 1

Incorrect syntax near 'VALUE'.

The error occurred in line 1, but the entire batch is rejected, and execution does not continue with line 2.
Even if the lines were reversed and the syntax error occurred in the second line, the first line would not be
executed because the entire batch would be rejected.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-4 Programming with T-SQL

Introducing T-SQL Variables

In T-SQL, as with other programming languages,
variables are objects that allow temporary storage
of a value for later use. You have already
encountered variables in this course, using them
to pass parameter values to stored procedures and
functions.

In T-SQL, variables must be declared before they
can be used. They may be assigned a value, or
initialized, when they are declared. Declaring a
variable includes providing a name and a data
type, as shown below.

As you have previously learned, variables must be
declared in the same batch in which they are referenced. In other words, all T-SQL variables are local in
scope to the batch, both in visibility and lifetime. Only other statements in the same batch can see a
variable declared in the batch. A variable is automatically destroyed when the batch ends.

The following example shows the use of variables to store values that will be passed to a stored procedure
in the same batch:

Using Variables

--Declare and initialize the variables.
DECLARE @numrows INT = 3, @catid INT = 2;
--Use variables to pass the parameters to the procedure.
EXEC Production.ProdsByCategory
 @numrows = @numrows, @catid = @catid;
GO

Variables (Transact-SQL)

http://aka.ms/Jub7kl

Working with Variables

Once you have declared a variable, you must
initialize it, or assign it a value. You can do that in
three ways:

 In SQL Server 2008 or later, you may initialize
a variable using the DECLARE statement.

 In any version of SQL Server, you may assign a
single (scalar) value using the SET statement.

 In any version of SQL Server, you can assign a
value to a variable using a SELECT statement.
Be sure that the SELECT statement returns
exactly one row. An empty result will leave the
variable with its original value; more than one result will cause an error.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-5

The following example shows the three ways of declaring and assigning values to variables:

Declaring and Assigning Values to Variables

DECLARE @var1 AS INT = 99;
DECLARE @var2 AS NVARCHAR(255);
SET @var2 = N'string';
DECLARE @var3 AS NVARCHAR(20);
SELECT @var3 = lastname FROM HR.Employees WHERE empid=1;
SELECT @var1 AS var1, @var2 AS var2, @var3 AS var3;
GO

The results are:

var1 var2 var3
---- ------ ----
99 string Davis

Working with Synonyms

In SQL Server, synonyms provide a method for creating a
link, or alias, to an object stored in the same database or
even on another instance of SQL Server. Objects that
might have synonyms defined for them include tables,
views, stored procedures, and user-defined functions.

Synonyms can be used to make a remote object appear
local or to provide an alternative name for a local object.
For example, synonyms can be used to provide an
abstraction layer between client code and the actual
database objects used by the code. The code references objects by their aliases, regardless of the object’s
actual name.

 Note: You can create a synonym which points to an object that does not yet exist. This is
called deferred name resolution. The SQL Server engine will not check for the existence of the
actual object until the synonym is used at runtime.

To manage synonyms, use the DDL commands CREATE SYNONYM, ALTER SYNONYM, and DROP
SYNONYM, as in the following example:

Managing Synonyms

CREATE SYNONYM dbo.ProdsByCategory FOR TSQL.Production.ProdsByCategory;
GO
EXEC dbo.ProdsByCategory @numrows = 3, @catid = 2;

To create a synonym, you must have CREATE SYNONYM permission as well as permission to alter the
schema in which the synonym will be stored.

For more information, see Using Synonyms (Database Engine) in the SQL Server 2016 Technical
Documentation:

Using Synonyms (Database Engine)

http://go.microsoft.com/fwlink/?LinkID=402798

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-6 Programming with T-SQL

Demonstration: T-SQL Programming Elements

In this demonstration, you will see how to:

 Control batch execution and variable usage.

Demonstration Steps
Control Batch Execution and Variable Usage

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod16\Setup.cmd as an administrator.

3. At the command prompt, type y, and then press Enter.

4. When the script completes, close the command prompt window.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod16\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment -- Create a proc to search for category, and then click
Execute.

11. Select the code under the comment -- Set up table for batch demos, and then click Execute.

12. Select the code under the comment Step 3, and then click Execute.

13. Select the code under the comment -- Show that the batch was successful, and then click Execute.

14. Select the code under the comment Step 4, and then click Execute.

15. Select the code under the comment Step 5, and then click Execute. Note the error message.

16. Select the code under the comment --Show that no rows were inserted, and then click Execute.

17. Select the code under the comment Step 6, and then click Execute.

18. Select the code under the comment --Run the following batch in its entirety to show the choices,
and then click Execute.

19. Select the code under the comment Step 7, and then click Execute.

20. Select the code under the comment -- Declare a parameter to search for category, and then click
Execute.

21. Select the code under the comment -- Test it locally, and then click Execute.

22. Select the code under the comment Step 8, and then click Execute.

23. Select the code under the comment Step 9, and then click Execute.

24. Select the code under the comment Step 10, and then click Execute.

25. Select the code under the comment Step 11, and then click Execute.

26. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-7

Question: You have the following T-SQL script:

INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)

 VALUES('Database Administration', 'IT Professional', 5);

INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)

 VALUES('C#.NET', 'Developer', 4);

INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)

 VALUES('Project Management', 'Management', 'Two');

GO

The script generates an error on the third INSERT statement. How many new rows do you
expect to find in the PossibleSkills table after this error?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-8 Programming with T-SQL

Lesson 2
Controlling Program Flow

All programming languages include elements that help you to determine the flow of the program, or the
order in which statements are executed. While not as fully featured as languages like C#, T-SQL provides a
set of control-of-flow keywords you can use to perform logic tests and create loops containing your T-
SQL data manipulation statements. In this lesson, you will learn how to use the T-SQL IF and WHILE
keywords.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the control-of-flow elements in T-SQL.

 Write T-SQL code using IF...ELSE blocks.

 Write T-SQL code that uses WHILE.

Understanding T-SQL Control-of-Flow Language

SQL Server provides language elements that
control the flow of program execution within T-
SQL batches, stored procedures, and
multistatement user-defined functions. These
control-of-flow elements mean you can
programmatically determine whether or not to
execute statements and programmatically
determine the order of those statements that
should be executed.

These elements include, but are not limited to:

 IF...ELSE, which executes code based on a
Boolean expression.

 WHILE, which creates a loop that executes providing a condition is true.

 BEGIN…END, which defines a series of T-SQL statements that should be executed together.

 Other keywords (for example, BREAK, CONTINUE, WAITFOR, and RETURN), which are used to support
T-SQL control-of-flow operations.

You will learn how to use some of these elements in the next lesson.

For more information, see the SQL Server 2016 Technical Documentation:

Control-of-Flow Language (Transact-SQL)

http://aka.ms/Pvihnn

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-9

Working with IF…ELSE

The IF...ELSE structure is used in T-SQL to
conditionally execute a block of code based on a
predicate. The IF statement determines whether or
not the following statement or block (if
BEGIN...END is used) executes. If the predicate
evaluates to TRUE, the code in the block is
executed. If the predicate evaluates to FALSE or
UNKNOWN, the block is not executed, unless the
optional ELSE keyword is used to identify another
block of code.

For example, the following IF statement, without
an ELSE, will only execute the statements between
BEGIN and END if the predicate evaluates to TRUE, indicating that the object exists. If it evaluates to FALSE
or UNKNOWN, no action is taken and execution resumes after the END statement:

IF Example

USE TSQL;
GO
IF OBJECT_ID('HR.Employees') IS NULL --this object does exist in the sample database
BEGIN
 PRINT 'The specified object does not exist';
END;

With the use of ELSE, you have another execution option when the IF predicate evaluates to FALSE or
UNKNOWN, as in the following example:

IF…ELSE Example

IF OBJECT_ID('HR.Employees') IS NULL
BEGIN
 PRINT 'The specified object does not exist';
END
ELSE
BEGIN
 PRINT 'The specified object exists';
END;

Within data manipulation operations, using IF with the EXISTS keyword can be a useful tool for efficient
existence checks, as in the following example:

Existence Check

IF EXISTS (SELECT * FROM Sales.EmpOrders WHERE empid =5)
 BEGIN
 PRINT 'Employee has associated orders';
 END;

For more information, see the SQL Server 2016 Technical Documentation:

IF...ELSE (Transact-SQL)

http://aka.ms/mvl2f5

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-10 Programming with T-SQL

Working with WHILE

The WHILE statement is used to execute code in a
loop based on a predicate. Like the IF statement,
the WHILE statement determines whether the
following statement or block (if BEGIN...END is
used) executes. The loop ends when the predicate
evaluates to FALSE or UNKNOWN. Typically, you
control the loop with a variable tested by the
predicate and manipulated in the body of the loop
itself.

The following example uses the @empid variable
in the predicate and changes its value in the
BEGIN...END block:

WHILE Example

DECLARE @empid AS INT = 1, @lname AS NVARCHAR(20);
WHILE @empid <=5
 BEGIN
 SELECT @lname = lastname FROM HR.Employees
 WHERE empid = @empid;
 PRINT @lname;
 SET @empid += 1;
 END;

 Note: Remember that if SELECT returns UNKNOWN, the variable retains its current value. If
there is no employee with an ID equal to @empid, the variable doesn't change from one
iteration to another. This would lead to an infinite loop.

The result is:

Davis
Funk
Lew
Peled
Buck

For additional options within a WHILE loop, you can use the CONTINUE and BREAK keywords to control
the flow. For more information about these options, see the SQL Server 2016 Technical Documentation:

WHILE (Transact-SQL)

http://aka.ms/Beqqci

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-11

Demonstration: Controlling Program Flow

In this demonstration, you will see how to:

 Control the flow of execution.

Demonstration Steps
Control the Flow of Execution

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Question

You want to populate a table by creating 15 new rows. Before you create the rows,
you need to check that the table exists. From the following T-SQL keywords,
choose the one that you will NOT need to use.

Select the correct answer.

 IF

 WHILE

 BEGIN

 END

 INSERT

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-12 Programming with T-SQL

Lab: Programming with T-SQL
Scenario
As a junior database developer for Adventure Works, you have so far focused on writing reports using
corporate databases stored in SQL Server 2016. To prepare for upcoming tasks, you will be working with
some basic T-SQL programming objects.

Objectives
After completing this lab, you will be able to:

 Declare variables and delimit batches.

 Use control of flow elements.

 Use variables with a dynamic SQL statement.

 Use synonyms.

Estimated Time: 45 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Declaring Variables and Delimiting Batches

Scenario
You will practice how to declare variables, retrieve their values, and use them in a SELECT statement to
return specific employee information.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Declare a Variable and Retrieve the Value

3. Set the Variable Value Using a SELECT Statement

4. Use a Variable in the WHERE Clause

5. Use Variables with Batches

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab16\Starter folder as Administrator.

 Task 2: Declare a Variable and Retrieve the Value
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab16\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

2. Write T-SQL code that will create a variable called @num as an int data type. Set the value of the
variable to 5 and display it using the alias mynumber. Execute the T-SQL code.

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\52 - Lab Exercise 1 - Task 1_1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-13

4. Write the batch delimiter GO after the written T-SQL code. In addition, write new T-SQL code that
defines two variables, @num1 and @num2, both as an int data type. Set the values to 4 and 6
respectively. Write a SELECT statement to retrieve the sum of both variables using the alias totalnum.
Execute the T-SQL code.

5. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\53 - Lab Exercise 1 - Task 1_2 Result.txt.

 Task 3: Set the Variable Value Using a SELECT Statement
1. Write T-SQL code that defines the variable @empname as an nvarchar(30) data type.

2. Set the value by executing a SELECT statement against the HR.Employees table. Compute a value that
concatenates the firstname and lastname column values. Add a space between the two column values
and filter the results to return the employee whose empid value is equal to 1.

3. Return the @empname variable’s value using the alias employee.

4. Execute the T-SQL code.

5. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\54 - Lab Exercise 1 - Task 2Result.txt.

6. What would happen if the SELECT statement was returning more than one row?

 Task 4: Use a Variable in the WHERE Clause
1. Copy the T-SQL code from task 2 and modify it by defining an additional variable named @empid

with an int data type. Set the variable’s value to 5. In the WHERE clause, modify the SELECT statement
to use the newly-created variable as a value for the column empid.

2. Execute the modified T-SQL code.

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\55 - Lab Exercise 1 - Task 3 Result.txt.

4. Change the @empid variable’s value from 5 to 2 and execute the modified T-SQL code to observe
the changes.

 Task 5: Use Variables with Batches
1. Copy the T-SQL code from task 3 and modify it by adding the batch delimiter GO before the

statement:

SELECT @empname AS employee;

2. Execute the modified T-SQL code.

3. What happened? What is the error message? Can you explain why the batch delimiter caused an
error?

Results: After this exercise, you should know how to declare and use variables in T-SQL code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-14 Programming with T-SQL

Exercise 2: Using Control-of-Flow Elements

Scenario
You would like to include conditional logic in your T-SQL code to control the flow of elements by setting
different values to a variable using the IF statement.

The main tasks for this exercise are as follows:

1. Write Basic Conditional Logic

2. Check the Employee Birthdate

3. Create and Execute a Stored Procedure

4. Execute a Loop Using the WHILE Statement

5. Remove the Stored Procedure

 Task 1: Write Basic Conditional Logic
1. Open the SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write T-SQL code that defines the variable @result as an nvarchar(20) data type and the variable @i
as an int data type. Set the value of the @i variable to 8. Write an IF statement that implements the
following logic:

o For @i variable values less than 5, set the value of the @result variable to “Less than 5”.

o For @i variable values between 5 and 10, set the value of the @result variable to “Between 5 and
10”.

o For all @i variable values over 10, set the value of the @result variable to “More than 10”.

o For other @i variable values, set the value of the @result variable to “Unknown”.

3. At the end of the T-SQL code, write a SELECT statement to retrieve the value of the @result variable
using the alias result. Highlight the complete T-SQL code and execute it.

4. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

5. Copy the T-SQL code and modify it by replacing the IF statement with a CASE expression to get the
same result.

 Task 2: Check the Employee Birthdate
1. Write T-SQL code that declares two variables: @birthdate (data type date) and @cmpdate (data type

date).

2. Set the value of the @birthdate variable by writing a SELECT statement against the HR.Employees
table and retrieving the column birthdate. Filter the results to include only the employee with an
empid equal to 5.

3. Set the @cmpdate variable to the value January 1, 1970.

4. Write an IF conditional statement by comparing the @birthdate and @cmpdate variable values. If
@birthdate is less than @cmpdate, use the PRINT statement to print the message “The person
selected was born before January 1, 1970”. Otherwise, print the message “The person selected was
born on or after January 1, 1970”.

5. Execute the T-SQL code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-15

6. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. This is a simple example for the
purpose of this exercise. Typically, a different statement block would execute in each case.

 Task 3: Create and Execute a Stored Procedure
1. The IT department has provided T-SQL code that encapsulates the previous task in a stored

procedure named Sales.CheckPersonBirthDate. It has two parameters: @empid, which you use to
specify an employee id, and @cmpdate, which you use as a comparison date. Execute the provided T-
SQL code:

CREATE PROCEDURE Sales.CheckPersonBirthDate
@empid int,
@cmpdate date
AS
DECLARE
@birthdate date;
SET @birthdate = (SELECT birthdate FROM HR.Employees WHERE empid = @empid);
IF @birthdate < @cmpdate
PRINT 'The person selected was born before ' + FORMAT(@cmpdate, 'MMMM d, yyyy', 'en-
US')
ELSE
PRINT 'The person selected was born on or after ' + FORMAT(@cmpdate, 'MMMM d, yyyy',
'en-US');

2. Write an EXECUTE statement to invoke the Sales.CheckPersonBirthDate stored procedure using the
parameters of 3 for @empid and January 1, 1990, for @cmpdate. Execute the T-SQL code.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

 Task 4: Execute a Loop Using the WHILE Statement
1. Write T-SQL code to loop 10 times, displaying the current loop information on each occasion.

2. Define the @i variable as an int data type. Write a WHILE statement to execute while the @i variable
value is less than or equal to 10. Inside the loop statement, write a PRINT statement to display the
value of the @i variable using the alias loopid. Add T-SQL code to increment the @i variable value by
1.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

 Task 5: Remove the Stored Procedure
 Execute the provided T-SQL code under the task 5 description to remove the created stored

procedure.

Results: After this exercise, you should know how to control the flow of the elements inside the T-SQL
code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-16 Programming with T-SQL

Exercise 3: Using Variables in a Dynamic SQL Statement

Scenario
You will practice how to invoke dynamic SQL code and how to pass variables to it.

The main tasks for this exercise are as follows:

1. Write a Dynamic SQL Statement That Does Not Use a Parameter

2. Write a Dynamic SQL Statement That Uses a Parameter

 Task 1: Write a Dynamic SQL Statement That Does Not Use a Parameter
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write T-SQL code that defines the variable @SQLstr as nvarchar(200) data type. Set the value of the
variable to a SELECT statement that retrieves the empid, firstname, and lastname columns in the
HR.Employees table.

3. Write an EXECUTE statement to invoke the written dynamic SQL statement inside the @SQLstr
variable. Execute the T-SQL code.

4. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a Dynamic SQL Statement That Uses a Parameter
1. Copy the previous T-SQL code and modify it to include in the dynamic batch stored in @SQLstr, a

filter in which empid is equal to a parameter named @empid. In the calling batch, define a variable
named @SQLparam as nvarchar(100). This variable will hold the definition of the @empid parameter.
This means setting the value of the @SQLparam variable to @empid int.

2. Write an EXECUTE statement that uses sp_executesql to invoke the code in the @SQLstr variable,
passing the parameter definition stored in the @SQLparam variable to sp_executesql. Assign the value
5 to the @empid parameter in the current execution.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

Results: After this exercise, you should have a basic knowledge of generating and invoking dynamic SQL
statements.

Exercise 4: Using Synonyms

Scenario
You will practice how to create a synonym for a table inside the AdventureWorks2008R2 database and
how to write a query against it.

The main tasks for this exercise are as follows:

1. Create and Use a Synonym for a Table

2. Drop the Synonym

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 16-17

 Task 1: Create and Use a Synonym for a Table
1. Open the T-SQL script 81 - Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write T-SQL code to create a synonym named dbo.Person for the Person.Person table in the
AdventureWorks database. Execute the written statement.

3. Write a SELECT statement against the dbo.Person synonym and retrieve the FirstName and LastName
columns. Execute the SELECT statement.

4. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab16\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Drop the Synonym
 Execute the provided T-SQL code under the task 2 description to remove the synonym.

Results: After this exercise, you should know how to create and use a synonym.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
16-18 Programming with T-SQL

Module Review and Takeaways
In this module, you have learned how to:

 Describe the language elements of T-SQL used for simple programming tasks.

 Describe batches and how they are handled by SQL Server.

 Declare and assign variables and synonyms.

 Use IF and WHILE blocks to control program flow.

Review Question(s)
Question: Can you declare a variable in one batch and reference it in multiple batches?

Question: Can you create a synonym that references an object that does not yet exist?

Question: Will a WHILE loop exit when the predicate evaluates to NULL?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-1

Module 17
Implementing Error Handling

Contents:
Module Overview 17-1

Lesson 1: Implementing T-SQL Error Handling 17-2

Lesson 2: Implementing Structured Exception Handling 17-7

Lab: Implementing Error Handling 17-11

Module Review and Takeaways 17-15

Module Overview
When creating applications for Microsoft® SQL Server® using the T-SQL language, appropriate handling
of errors is critically important. A large number of myths surround how error handling works in T-SQL. In
this module, you will explore T-SQL error handling, look at how it has traditionally been implemented,
and how structured exception handling can be used.

Objectives
After completing this module, you will be able to:

 Implement T-SQL error handling.

 Implement structured exception handling.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-2 Implementing Error Handling

Lesson 1
Implementing T-SQL Error Handling

You should consider how errors can be handled or reported in T-SQL. The T-SQL language offers a variety
of error handling capabilities. This lesson covers basic T-SQL error handling, including how you can raise
errors intentionally and set up alerts to fire when errors occur. In the next lesson, you will see how to
implement a more advanced form of error handling known as structured exception handling.

Lesson Objectives
After completing this lesson, you will be able to:

 Raise errors using the RAISERROR statement.

 Raise errors using the THROW statement.

 Use the @@ERROR system variable.

 Create custom errors.

 Create alerts that fire when errors occur.

Errors and Error Messages

An error indicates a problem or notable issue that
arises during a database operation. Each error
includes the following elements:

 Error number. Unique number identifying
the specific error.

 Error message. Text describing the error.

 Severity. Numeric indication of seriousness
from 1 to 25.

 State. Internal state code for the database
engine condition.

 Procedure. The name of the stored procedure or trigger in which the error occurred.

 Line number. Which statement in the batch or procedure generated the error.

Errors can be generated by the SQL Server Database Engine in response to an event or failure at the
system level; or you can generate application errors in your Transact-SQL code.

System Errors
System errors are predefined, and you can view them in the sys.messages system view. When a system
error occurs, SQL Server may take automatic remedial action, depending on the severity of the error. For
example, when a high-severity error occurs, SQL Server may take a database offline or even stop the
database engine service.

Custom Errors
You can generate errors in Transact-SQL code to respond to application-specific conditions or to
customize information sent to client applications in response to system errors. These application errors
can be defined inline where they are generated, or you can predefine them in the sys.messages table
alongside the system-supplied errors. The error numbers used for custom errors must be 50001 or above.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-3

To add a custom error message to sys.messages, use sp_addmessage. The user for the message must be
a member of the sysadmin or serveradmin fixed server roles.

This is the sp_addmessage syntax:

sp_addmessage Syntax

sp_addmessage [@msgnum=] msg_id , [@severity=] severity , [@msgtext=] 'msg'
 [, [@lang=] 'language']
 [, [@with_log=] { 'TRUE' | 'FALSE' }]
 [, [@replace=] 'replace']

This is an example of a custom error message:

sp_addmessage Example

sp_addmessage 50001, 10, N’Unexpected value entered’;

In addition to being able to define custom error messages, members of the sysadmin server role can also
use an additional parameter, @with_log. When set to TRUE, the error will also be recorded in the
Windows Application log. Any message written to the Windows Application log is also written to the SQL
Server error log. Be judicious with the use of the @with_log option because network and system
administrators tend to dislike applications that are “chatty” in the system logs. However, if the error needs
to be trapped by an alert, the error must first be written to the Windows Application log.

Note that raising system errors is not supported.

Messages can be replaced without deleting them first by using the @replace = ‘replace’ option.

The messages are customizable and different ones can be added for the same error number for multiple
languages, based on a language_id value. (Note: English messages are language_id 1033.)

Raising Errors Using RAISERROR

Both PRINT and RAISERROR can be used to return
information or warning messages to applications.
RAISERROR allows applications to raise an error
that could then be caught by the calling process.

RAISERROR

The ability to raise errors in T-SQL makes error
handling in the application easier, because it is
sent like any other system error. RAISERROR is
used to:

 Help troubleshoot T-SQL code.

 Check the values of data.

 Return messages that contain variable text.

Note that using a PRINT statement is similar to raising an error of severity 10, as shown in the sample on
the slide.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-4 Implementing Error Handling

Substitution Placeholders and Message Number
Note that, in the message shown in the example on the slide, %d is a placeholder for a number and %s is
a placeholder for a string. Note also that a message number was not mentioned. When errors with
message strings are raised using this syntax, they always have error number 50000.

Raising Errors Using THROW

The THROW statement offers a simpler method of
raising errors in code. Errors must have an error
number of at least 50000.

THROW

THROW differs from RAISERROR in several ways:

 Errors raised by THROW are always severity
16.

 The messages returned by THROW are not
related to any entries in sys.sysmessages.

 Errors raised by THROW only cause
transaction abort when used in conjunction with SET XACT_ABORT ON and the session is terminated.

Using @@Error

Most traditional error handling code in SQL Server
applications has been created using @@ERROR. Note that
structured exception handling was introduced in SQL
Server 2005 and provides a strong alternative to using
@@ERROR. It will be discussed in the next lesson. A large
amount of existing SQL Server error handling code is
based on @@ERROR, so it is important to understand
how to work with it.

@@ERROR
@@ERROR is a system variable that holds the error number of the last error that has occurred. One
significant challenge with @@ERROR is that the value it holds is quickly reset as each additional statement
is executed.

For example, consider the following code:

@@ERROR Example

RAISERROR(N'Message', 16, 1);
IF @@ERROR <> 0
PRINT 'Error=' + CAST(@@ERROR AS VARCHAR(8));
GO
You might expect that, when the code is executed, it would return the error number in a
printed string. However, when the code is executed, it returns:
Msg 50000, Level 16, State 1, Line 1
Message
Error=0

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-5

Note that the error was raised but the message printed was “Error=0”. In the first line of the output, you
can see that the error, as expected, was actually 50000, with a message passed to RAISERROR. This is
because the IF statement that follows the RAISERROR statement was executed successfully and caused the
@@ERROR value to be reset.

For this reason, when working with @@ERROR, it is important to capture the error number into a variable
as soon as it is raised, and then continue processing with the variable.

Look at the following code that demonstrates this:

Capturing @@ERROR Into a Variable

DECLARE @ErrorValue int;
RAISERROR(N'Message', 16, 1);
SET @ErrorValue = @@ERROR;
IF @ErrorValue <> 0
PRINT 'Error=' + CAST(@ErrorValue AS VARCHAR(8));

When this code is executed, it returns the following output:

Msg 50000, Level 16, State 1, Line 2
Message
Error=50000

Note that the error number is correctly reported now.

Centralizing Error Handling
One other significant issue with using @@ERROR for error handling is that it is difficult to centralize
within your T-SQL code. Error handling tends to end up scattered throughout the code. It would be
possible to centralize error handling using @@ERROR to some extent, by using labels and GOTO
statements. However, this would be frowned upon by most developers today as a poor coding practice.

Creating Alerts When Errors Occur

For certain categories of errors, administrators
might create SQL Server alerts, because they wish
to be notified as soon as these occur. This can
even apply to user-defined error messages. For
example, you might want to raise an alert
whenever a transaction log fills. Alerting is
commonly used to bring high severity errors (such
as severity 19 or above) to the attention of
administrators.

Raising Alerts
Alerts can be created for specific error messages.
The alerting service works by registering itself as a
callback service with the event logging service. This means that alerts only work on logged errors.

There are two ways to make an error raise an alert—you can use the WITH LOG option when raising the
error or the message can be altered to make it logged by executing sp_altermessage. The WITH LOG
option affects only the current statement. Using sp_altermessage changes the error behavior for all future
use. Modifying system errors via sp_altermessage is only possible from SQL Server 2005 SP3 or SQL Server
2008 SP1 onwards.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-6 Implementing Error Handling

Demonstration: Handling Errors Using T-SQL

In this demonstration, you will see how to:

 Handle errors.

Demonstration Steps
Handle Errors

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod17\Setup.cmd as an administrator.

3. At the command prompt, type y, and then press Enter.

4. When the script completes, close the command prompt window.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod17\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment --Capture @@ERROR into a variable, and then click Execute.

11. Select the code under the comment --Create a custom error message, and then click Execute.

12. Select the code under the comment --Use a custom error message, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

Question: You are writing some error handling in a T-SQL script. If a problem arises, you
want to raise an error with a severity of 20. Should you use RAISERROR or THROW for this
error handling?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-7

Lesson 2
Implementing Structured Exception Handling

Now you have an understanding of the nature of errors and basic error handling in T-SQL, it is time to
look at a more advanced form of error handling. Structured exception handling was introduced in SQL
Server 2005. You will see how to use it and evaluate its benefits and limitations.

Lesson Objectives
After completing this lesson, you will be able to:

 Explain TRY CATCH block programming.

 Describe the role of error handling functions.

 Describe catchable versus noncatchable errors.

 Explain how TRY CATCH relates to transactions.

 Explain how errors in managed code are surfaced.

TRY/CATCH Block Programming

Structured exception handling has been part of
high level languages for some time, after being
introduced to the T-SQL language by SQL Server
2005.

TRY/CATCH Block Programming
Structured exception handling is more powerful
than error handling based on the @@ERROR
system variable. It allows you to prevent code
from being littered with error handling code and
to centralize that error handling code.

Centralization of error handling code also means
you can focus more on the purpose of the code rather than the error handling it contains.

TRY Block and CATCH Block
When using structured exception handling, code that might raise an error is placed within a TRY block.
TRY blocks are enclosed by BEGIN TRY and END TRY statements.

Should a catchable error occur (most errors can be caught), execution control moves to the CATCH block.
The CATCH block is a series of T-SQL statements enclosed by BEGIN CATCH and END CATCH statements.

Note that, while BEGIN CATCH and END TRY are separate statements, the BEGIN CATCH must
immediately follow the END TRY.

Current Limitations
High level languages often offer a try/catch/finally construct, and are often used to release resources
implicitly. There is no equivalent FINALLY block in T-SQL.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-8 Implementing Error Handling

Error Handling Functions

CATCH blocks make the error-related information
available throughout the duration of the CATCH
block. This includes subscopes, such as stored
procedures, run from within the CATCH block.

Error Handling Functions
You should recall that, when programming with
@@ERROR, the value held by the @@ERROR
system variable was reset as soon as the next
statement was executed.

Another key advantage of structured exception
handling in T-SQL is that a series of error handling
functions has been provided and these retain their values throughout the CATCH block. Separate
functions provide each property of an error that has been raised.

This means you can write generic error handling stored procedures that can still access the error-related
information.

Catchable vs. Noncatchable Errors

It is important to realize that, while TRY/CATCH
blocks allow you to catch a much wider range of
errors than you could with @@ERROR, you cannot
catch every type.

Catchable vs. Noncatchable Errors
Not all errors can be caught by TRY/CATCH blocks
within the same scope where the TRY/CATCH
block exists. Often, errors that cannot be caught in
the same scope can be caught in a surrounding
scope. For example, you might not be able to
catch an error within the stored procedure that
contains the TRY/CATCH block. However, you are
likely to catch that error in a TRY/CATCH block in the code that called the stored procedure where the
error occurred.

Common Noncatchable Errors
Common examples of noncatchable errors are:

 Compile errors, such as syntax errors, that prevent a batch from compiling.

 Statement level recompilation issues that usually relate to deferred name resolution. For example, you
could create a stored procedure that refers to an unknown table. An error is only thrown when the
procedure tries to resolve the name of the table to an objectid.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-9

Rethrowing Errors Using THROW

If the THROW statement is used in a CATCH block without
any parameters, it will rethrow the error that caused the
code to enter the CATCH block. You can use this technique
to implement error logging in the database by catching
errors and logging their details, and then throwing the
original error to the client application, so that it can be
handled there.

In some earlier versions of SQL Server, there was no
method to throw a system error. While THROW cannot
specify a system error to raise, when THROW is used without parameters in a CATCH block, it will re-raise
both system and user errors.

Errors in Managed Code

SQL CLR integration allows for the execution of managed
code within SQL Server. High level .NET languages, such as
C# and VB, have detailed exception handling available to
them. Errors can be caught using standard .NET
try/catch/finally blocks.

Errors in Managed Code
In general, you might wish to catch errors within managed
code as much as possible.

It is important to realize, though, that any errors not
handled in the managed code are passed back to the calling T-SQL code. Whenever any error that occurs
in managed code is returned to SQL Server, it will appear to be a 6522 error. Errors can be nested and that
particular error will be wrapping the real cause of the error.

Another rare but possible cause of errors in managed code would be that the code could execute a
RAISERROR T-SQL statement via a SqlCommand object.

Demonstration: Using a TRY/CATCH Block

In this demonstration, you will see how to:

 Use a TRY/CATCH block.

Demonstration Steps
Use a TRY/CATCH Block

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-10 Implementing Error Handling

Question: You have the following T-SQL script:

BEGIN TRY

 INSERT INTO HumanResources.PossibleSkills(SkillName, Category)

 VALUES ('Database Administration', 'IT Professional');

END TRY

DECLARE @prefix AS NVARCHAR(50) = 'There has been an error: ';

BEGIN CATCH

 PRINT @prefix + ERROR_MESSAGE();

 THROW;

END CATCH;

GO

The code will not compile and execute. What should you do to troubleshoot this code?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-11

Lab: Implementing Error Handling
Scenario
As a junior database developer for Adventure Works, you will be creating stored procedures using
corporate databases stored in SQL Server 2012. To create more robust procedures, you will be
implementing error handling in your code.

Objectives
After completing this lab, you will be able to:

 Redirect errors with TRY/CATCH.

 Use THROW to pass an error message to a client.

Estimated Time: 30 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Redirecting Errors with TRY/CATCH
The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a Basic TRY/CATCH Construct

3. Display an Error Number and an Error Message

4. Add Conditional Logic to a CATCH Block

5. Execute a Stored Procedure in the CATCH Block

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab17\Starter folder as Administrator.

 Task 2: Write a Basic TRY/CATCH Construct
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. Open the project file D:\Labfiles\Lab17\Starter\Project\Project.ssmssln and the T-SQL script 51 -
Lab Exercise 1.sql. Ensure that you are connected to the TSQL database.

3. Execute the provided SELECT statement:

SELECT CAST(N'Some text' AS int);

4. Notice that you get an error. Write a TRY/CATCH construct by placing the SELECT statement in a TRY
block. In the CATCH block, use the PRINT command to display the text “Error”. Execute the T-SQL
code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-12 Implementing Error Handling

 Task 3: Display an Error Number and an Error Message
1. The IT department has provided T-SQL code that looks like this:

DECLARE @num varchar(20) = '0';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
END CATCH;

2. Execute the provided T-SQL code. Notice that nothing happens although, based on the @num
variable’s value, you should get an error because of the division by zero. Why didn’t you get an error?

3. Modify the CATCH block by adding two PRINT statements. The first statement should display the
error number by using the ERROR_NUMBER function. The second statement should display the error
message by using the ERROR_MESSAGE function. Also, include a label in each printed message, such
as “Error Number:” for the first message and “Error Message:” for the second one.

4. Execute and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab17\Solution\Exercise 1 - Task 2_1 Result.txt.

5. Change the value of the @num variable from 0 to A and execute the T-SQL code.

6. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab17\Solution\Exercise 1 - Task 2_2 Result.txt.

7. Change the value of the @num variable from A to 1000000000 and execute the T-SQL code.

8. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab17\Solution\Exercise 1 - Task 2_3 Result.txt.

 Task 4: Add Conditional Logic to a CATCH Block
1. Modify the T-SQL code by including an IF statement in the CATCH block before the added PRINT

statements. The IF statement should check to see whether the error number is equal to 245 or 8114. If
this condition is true, display the message “Handling conversion error…” using a PRINT statement. If
this condition is not true, the message “Handling non-conversion error…” should be displayed.

2. Set the value of the @num variable to A and execute the T-SQL code.

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab17\Solution\ Exercise 1 - Task 3_1 Result.txt.

4. Change the value of the @num variable to 0 and execute the T-SQL code.

5. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab17\Solution\Exercise 1 - Task 3_2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-13

 Task 5: Execute a Stored Procedure in the CATCH Block
1. The IT department has given you T-SQL code to create a stored procedure named dbo.GetErrorInfo

to display different information about the error. Execute the provided T-SQL code:

CREATE PROCEDURE dbo.GetErrorInfo AS
PRINT 'Error Number: ' + CAST(ERROR_NUMBER() AS varchar(10));
PRINT 'Error Message: ' + ERROR_MESSAGE();
PRINT 'Error Severity: ' + CAST(ERROR_SEVERITY() AS varchar(10));
PRINT 'Error State: ' + CAST(ERROR_STATE() AS varchar(10));
PRINT 'Error Line: ' + CAST(ERROR_LINE() AS varchar(10));
PRINT 'Error Proc: ' + COALESCE(ERROR_PROCEDURE(), 'Not within procedure');

2. Modify the TRY/CATCH code by writing an EXECUTE statement in the CATCH block to invoke the
stored procedure dbo.GetErrorInfo.

3. Execute the T-SQL code.

Results: After this exercise, you should be able to capture and handle errors using a TRY/CATCH
construct.

Exercise 2: Using THROW to Pass an Error Message Back to a Client

Scenario
You will practice how to pass an error message using the THROW statement, and how to send custom
error messages.

The main tasks for this exercise are as follows:

1. Rethrow the Existing Error Back to a Client

2. Add an Error Handling Routine

3. Add a Different Error Handling Routine

4. Remove the Stored Procedure

 Task 1: Rethrow the Existing Error Back to a Client
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL2012

database.

2. Modify the code to include the THROW statement in the CATCH block after the EXECUTE statement.
Execute the T-SQL code.

 Task 2: Add an Error Handling Routine
1. Modify the T-SQL code by replacing a THROW statement with an IF statement. Write a condition to

compare the error number to the value 8134. If this condition is true, the message “Handling division
by zero…” should be displayed. Otherwise, display the message “Throwing original error” and add a
THROW statement.

2. Execute the T-SQL code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
17-14 Implementing Error Handling

 Task 3: Add a Different Error Handling Routine
1. The IT department has given you T-SQL code to create a new variable named @msg and set its value:

DECLARE @msg AS varchar(2048);
SET @msg = 'You are doing the module 17 on ' + FORMAT(CURRENT_TIMESTAMP, 'MMMM d,
yyyy', 'en-US') + '. It''s not an error but it means that you are near the final
module!';

2. Write a THROW statement and specify the message ID of 50001 for the first argument, the @msg
variable for the second argument, and the value 1 for the third argument. Highlight the complete T-
SQL code and execute it.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab17\Solution\Exercise 2 - Task 3 Result.txt.

 Task 4: Remove the Stored Procedure
 Execute the provided T-SQL code to remove the stored procedure dbo.GetErrorInfo.

Results: After this exercise, you should know how to throw an error to pass messages back to a client.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 17-15

Module Review and Takeaways
In this module, you have learned how to:

 Implement T-SQL error handling.

 Implement structured exception handling.

Review Question(s)
Question: Which error types cannot by caught by structured exception handling?

Question: Can TRY/CATCH blocks be nested?

Question: How can you use THROW outside of a CATCH block?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-1

Module 18
Implementing Transactions

Contents:
Module Overview 18-1

Lesson 1: Transactions and the Database Engine 18-2

Lesson 2: Controlling Transactions 18-7

Lab: Implementing Transactions 18-12

Module Review and Takeaways 18-16

Module Overview
As you continue to move past SELECT statements and into data modification operations with T-SQL, you
should consider how to structure batches containing multiple modification statements, and those that
might encounter errors. In this module, you will learn how to define transactions to control the behavior
of batches of T-SQL statements submitted to Microsoft® SQL Server®. You will also learn how to
determine whether a runtime error has occurred after work has begun, and whether the work needs to be
undone.

Objectives
After completing this module, you will be able to:

 Describe transactions and the differences between batches and transactions.

 Describe batches and how they are handled by SQL Server.

 Create and manage transactions with transaction control language (TCL) statements.

 Use SET XACT_ABORT to define SQL Server's handling of transactions outside TRY/CATCH blocks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-2 Implementing Transactions

Lesson 1
Transactions and the Database Engine

In this lesson, you will compare simple batches of T-SQL statements to transactions, which allow you to
control the behavior of code submitted to SQL Server. You will decide whether special action is needed to
respond to a runtime error after work has begun and whether the work needs to be undone.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe a SQL Server database transaction.

 Describe the difference between a batch and a transaction.

 Describe how transactions extend batches.

Defining Transactions

Earlier in this course, you learned that a batch was
a collection of T-SQL statements sent to SQL
Server as a unit for parsing, optimization, and
execution. A transaction extends a batch from a
unit submitted to the database engine to a unit of
work performed by the database engine. A
transaction is a sequence of T-SQL statements
performed in an all-or-nothing fashion by SQL
Server.

Transactions are commonly created in two ways:

 Autocommit transactions. Individual data
modification statements (for example, INSERT,
UPDATE, and DELETE) submitted separately from other commands are automatically wrapped in a
transaction by SQL Server. These single-statement transactions are automatically committed when the
statement succeeds, or are automatically rolled back when the statement encounters a runtime error.

 Explicit transactions. User-initiated transactions are created through the use of TCL commands that
begin, commit, or roll back work, based on user-issued code. TCL is a subset of T-SQL.

The primary characteristic of a transaction is that all activity within a transaction's boundaries must either
succeed or all fail—no partial completion is permitted. User transactions are typically defined to
encapsulate operations that must logically occur together, such as entries into related tables as part of a
single business operation.

For example, the following batch inserts data into two tables using two INSERT statements that are part of
a single order-processing operation:

INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-3

Business rules might dictate that an order is complete only if the data was successfully inserted into both
tables. As you will see in the next lesson, a runtime error in this batch might result in data being inserted
into one table but not the other. Enclosing both INSERT statements in a user-defined transaction provides
the ability to undo the data insertion in one table if the INSERT statement in the other table fails. A simple
batch does not provide this capability.

SQL Server manages resources on behalf of transactions while they are active. These resources might
include locks and entries in the transaction log to allow SQL Server to undo changes made by the
transaction, should a rollback be required.

For more information, see the SQL Server 2016 Technical Documentation:

Transaction Statements (Transact-SQL)

http://aka.ms/H9jd4y

The Need for Transactions: Issues with
Batches

While batches of T-SQL statements provide a unit of code
submitted to the server, they do not include any logic for
dealing with partial success when a runtime error occurs,
even with the use of structured exception handling's
TRY/CATCH blocks.

The following example illustrates this problem:

Code Without Transaction

BEGIN TRY
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (88,3,'2006-07-15');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (999,77,26.20,15);
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;
END CATCH;

If the first INSERT statement succeeds but a subsequent one fails, the new row in the dbo.SimpleOrders
table will persist after the end of the batch, even after the execution branches to the CATCH block. This
issue applies to any successful statements, if a later statement fails with a runtime error.

 Note: Remember that syntax or name-resolution errors cause the entire batch to return an
error, preventing any execution. Runtime errors only occur after the batch has been submitted,
parsed, planned, and compiled for execution.

To work around this situation, you will need to direct SQL Server to treat the batch as a transaction. You
will learn more about creating transactions in the next topic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-4 Implementing Transactions

Transactions Extend Batches

As you have seen, runtime errors encountered
during the execution of simple batches create the
possibility of partial success, which is not typically
a desired outcome. To address this, you will add
code to identify the batch as a transaction by
placing the batch between BEGIN TRANSACTION
and COMMIT TRANSACTION statements. You will
also add error-handling code to roll back the
transaction should an error occur. This error-
handling code will undo the partial changes made
before the error occurred.

The following example shows the addition of TCL
commands to address the possibility of an error occurring after some work has been performed:

Transaction Example

BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-15');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (99, 2,15.20,20);
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;
 ROLLBACK TRANSACTION;
END CATCH;

Within the TRY block, the INSERT statements are wrapped by BEGIN TRANSACTION and COMMIT
TRANSACTION statements. This identifies the INSERT statements as a single unit of work that must
succeed or fail together. If no runtime error occurs, the transaction commits, and the result of each
INSERT is allowed to persist in the database.

If an error occurs during the execution of the first INSERT statement, the execution branches to the
CATCH block, bypassing the second INSERT statement. The ROLLBACK statement in the CATCH block
terminates the transaction, releasing its resources.

If an error occurs during the execution of the second INSERT statement, the execution branches to the
CATCH block. Because the first INSERT completed successfully and added rows to the dbo.SimpleOrders
table, the ROLLBACK statement is used to undo the successful INSERT operation.

 Note: You will learn how to use the BEGIN TRANSACTION, COMMIT TRANSACTION, and
ROLLBACK TRANSACTION statements in the next lesson.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-5

Demonstration: Transactions and the Database Engine

In this demonstration, you will see how to:

 Use transactions.

Demonstration Steps
Use Transactions

1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then
log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod18\Setup.cmd as an administrator.

3. At the command prompt, type y, and then press Enter.

4. When the script completes, close the command prompt window.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod18\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute. Note the error message.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

Categorize Activity
Place each T-SQL keyword into the appropriate category. Indicate your answer by writing the category
number to the right of each item.

Items

1 BEGIN TRANSACTION

2 BEGIN TRY

3 COMMIT TRANSACTION

4 END TRY

5 END TRANSACTION

6 BEGIN CATCH

7 ROLLBACK TRANSACTION

8 END CATCH

9 INSERT

10 RAISERROR

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-6 Implementing Transactions

Category 1 Category 2

TCL Non-TCL

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-7

Lesson 2
Controlling Transactions

To control how SQL Server treats your data modification statements, you need to use TCL statements. By
enclosing batches between BEGIN TRANSACTION and COMMIT or ROLLBACK TRANSACTION statements,
you will identify the units of work to be performed together and provide points of recovery in your code.

Lesson Objectives
After completing this lesson, you will be able to:

 Mark the beginning of units of work with BEGIN TRANSACTION.

 Mark successful completion of batches with COMMIT TRANSACTION.

 Undo failed transactions with ROLLBACK TRANSACTION.

 Describe how to use XACT_ABORT to automatically roll back failed T-SQL statements.

BEGIN TRANSACTION

SQL Server will automatically wrap individual data
modification statements (for example, INSERT, UPDATE, and
DELETE) in their own transactions, which auto-commit on
success and auto-rollback on failure. While this behavior is
transparent to the user, you have seen the results of this
when you have executed a batch of T-SQL statements with
partial success. Successful INSERTS have written their values
to the target tables, while failed statements have not left
values behind.

If you need to identify a group of statements as a transactional unit of work, you cannot rely on this
automatic behavior. Instead, you will need to manually specify the boundaries of the unit. To mark the
start of a transaction, use the BEGIN TRANSACTION statement, which may also be stated as BEGIN TRAN.

If you are using T-SQL structured exception handling, you will want to begin the transaction inside a TRY
block. Within the exception handler, you may decide whether to COMMIT or ROLLBACK the transaction,
depending on its outcome.

When you identify your own transactions with BEGIN TRANSACTION, consider the following:

 Once you initiate a transaction, you must properly end it. Use COMMIT TRANSACTION on success or
ROLLBACK TRANSACTION on failure.

 While transactions may be nested, inner transactions will be rolled back, even if committed, if the
outer transaction rolls back. Therefore, nested transactions are not typically useful in user code.

 Transactions last until a COMMIT TRANSACTION or a ROLLBACK TRANSACTION is issued, or until the
originating connection is dropped, at which point SQL Server will roll back the transaction
automatically.

 A transaction's scope is the connection in which it was started. Transactions cannot span connections
(except by bound sessions, a deprecated feature that is beyond the scope of this course).

 SQL Server may take and hold locks on resources during the lifespan of the transaction. To reduce
concurrency issues, consider keeping your transactions as short as possible. For more information on
locking in SQL Server, see course 20762B: Developing Microsoft SQL Server 2016 Databases.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-8 Implementing Transactions

For more information on BEGIN TRANSACTION statements, see the SQL Server 2016 Technical
Documentation:

BEGIN TRANSACTION (Transact-SQL)

http://aka.ms/E3u6jb

For more information on nested transactions, see the SQL Server 2016 Technical Documentation:

Nesting Transactions

http://go.microsoft.com/fwlink/?LinkID=402857

COMMIT TRANSACTION

When the statements in your transaction have
completed without error, you need to instruct SQL
Server to end the transaction, making the
modifications permanent and releasing resources
that were held on behalf of the transaction. To do
this, use the COMMIT TRANSACTION (or COMMIT
TRAN) statement.

If you are using T-SQL structured exception
handling, you will want to COMMIT the
transaction inside the TRY block in which you
began it.

The following example shows the use of COMMIT
TRANSACTION to mark a batch as completed:

COMMIT TRANSACTION Example

BEGIN TRY
 BEGIN TRANSACTION
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
 COMMIT TRANSACTION
END TRY

 Note: The previous example does not contain logic to determine if the transaction should
be committed or rolled back. It is relying on the success of the statements to provide the logic to
implement error handling.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-9

ROLLBACK TRANSACTION

To end a failed transaction, you will use the
ROLLBACK command. ROLLBACK undoes any
modifications made to data during the
transaction, reverting it to the state it was in when
the transaction started. This includes rows inserted,
deleted, or updated, in addition to objects
created. ROLLBACK also allows SQL Server to
release resources, such as locks, held during the
transaction's lifespan.

If you are using T-SQL structured exception
handling, you will want to ROLLBACK the
transaction inside the CATCH block that follows
the TRY block containing the BEGIN and COMMIT statements.

The following example shows the use of the ROLLBACK TRANSACTION statement inside a CATCH block,
where the transaction will only be rolled back in case of an error:

ROLLBACK TRANSACTION Example

BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;
 ROLLBACK TRANSACTION;
END CATCH;

Before issuing a ROLLBACK command, you might wish to test to see if a transaction is active. You can use
the T-SQL XACT_STATE function to determine if there is an active transaction to be rolled back. This can
help avoid errors being raised inside the CATCH block.

XACT_STATE returns the following values:

XACT_STATE Results Description

0 There is no active user transaction.

1 The current request has an active, committable, user transaction.

-1 The current request has an active user transaction, but an error has
occurred. The transaction can only be rolled back.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-10 Implementing Transactions

The following example shows the use of XACT_STATE to issue a ROLLBACK statement only if the
transaction is active but cannot be committed:

BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;
 IF (XACT_STATE()) = -1
 BEGIN
 ROLLBACK TRANSACTION;
 END;
 ELSE -- provide for other outcomes of XACT_STATE()
END CATCH;

For more information, see Transaction Statements (Transact-SQL) in the SQL Server 2016 Technical
Documentation:

Transaction Statements (Transact-SQL)

http://aka.ms/h9jd4y

Using XACT_ABORT

As you have seen, SQL Server does not
automatically roll back transactions when errors
occur. In this module, most of the discussion
about controlling transactions has assumed the
use of TRY/CATCH blocks to perform the logic and
either commit or roll back a transaction. For
situations in which you are not using TRY/CATCH
blocks, another option exists for automatically
rolling back a transaction when an error occurs.
The XACT_ABORT setting can be used to specify
whether SQL Server rolls back the current
transaction when a runtime error occurs during
the execution of T-SQL code.

By default, XACT_ABORT is off. Change the XACT_ABORT setting with the SET command:

SET XACT_ABORT ON;

When SET XACT_ABORT is ON, the entire transaction is terminated and rolled back on error, unless the
error occurs in a TRY block. An error in a TRY block leaves the transaction open but not committable,
despite the setting of XACT_ABORT.

For more information, see the SQL Server 2016 Technical Documentation:

SET XACT_ABORT (Transact-SQL)

http://aka.ms/Qehdhl

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-11

Demonstration: Controlling Transactions

In this demonstration, you will see how to:

 Control transactions.

Demonstration Steps
Control Transactions

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute. Note the error message.

8. Select the code under the comment Step 7, and then click Execute.

9. Select the code under the comment Step 8, and then click Execute.

10. Close SQL Server Management Studio without saving any files.

Question: You have executed the following batch of T-SQL statements:

BEGIN TRY

 BEGIN TRANSACTION;

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-12');

 INSERT INTO
dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (1, 2,15.20,20);

END TRY

BEGIN CATCH

 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;

 ROLLBACK TRANSACTION;

END CATCH;

A fellow query writer is now receiving errors resulting from locks on database records. What can
you do to troubleshoot this problem?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-12 Implementing Transactions

Lab: Implementing Transactions
Scenario
As a junior database developer for Adventure Works, you will be creating stored procedures using
corporate databases stored in SQL Server 2016. To create more robust procedures, you will be
implementing transactions in your code.

Objectives
After completing this lab, you will be able to:

 Control transactions.

 Add error handling to a CATCH block.

Estimated Time: 30 minutes

Virtual machine: 20761B-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Controlling Transactions with BEGIN, COMMIT, and ROLLBACK

Scenario
The IT department has supplied different examples of INSERT statements to practice executing multiple
statements inside one transaction. You will practice how to start a transaction, commit or abort it, and
return the database to its state before the transaction.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Commit a Transaction

3. Delete the Previously Inserted Rows from the HR.Employees Table

4. Open a Transaction and Use the ROLLBACK Statement

5. Clear the Modifications Against the HR.Employees Table

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab18\Starter folder as Administrator.

 Task 2: Commit a Transaction
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab18\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql.
Ensure that you are connected to the TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-13

2. The IT department has provided the following T-SQL code:

INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'20110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);

3. This code inserts two rows into the HR.Employees table. By default, SQL Server treats each individual
statement as a transaction. In other words, by default, SQL Server automatically commits the
transaction at the end of each individual statement. In this case, the default behavior would be two
transactions because you have two INSERT statements. (Do not worry about the details of the INSERT
statements because they are only meant to provide sample code for the transaction scenario.)

4. In this example, you would like to control the transaction and execute both INSERT statements inside
one transaction.

5. Before the supplied T-SQL code, write a statement to open a transaction. After the supplied INSERT
statements, write a statement to commit the transaction. Highlight all of the T-SQL code and execute
it.

6. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab18\Solution\52 - Lab Exercise 1 - Task 1_1 Result.txt.

7. Write a SELECT statement to retrieve the empid, lastname, and firstname columns from the
HR.Employees table. Order the employees by the empid column in a descending order. Execute the
SELECT statement.

8. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab18\Solution\53 - Lab Exercise 1 - Task 1_2 Result.txt. Notice the two new rows in the
result set.

 Task 3: Delete the Previously Inserted Rows from the HR.Employees Table
1. Execute the provided T-SQL code to delete rows inserted from the previous task:

DELETE HR.Employees
WHERE empid IN (10, 11);
DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

Note that this is cleanup code that will not be explained in this course.

 Task 4: Open a Transaction and Use the ROLLBACK Statement
1. The IT department has provided T-SQL code (which happens to the same code as in task 1). Before

the provided T-SQL code, write a statement to start a transaction.

2. Highlight the written statement and the provided T-SQL code, and execute it.

3. Write a SELECT statement to retrieve the empid, lastname, and firstname columns from the
HR.Employees table. Order the employees by the empid column.

4. Execute the written SELECT statement and notice the two new rows in the result set.

5. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab18\Solution\54 - Lab Exercise 1 - Task 3_1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-14 Implementing Transactions

6. After the written SELECT statement, write a ROLLBACK statement to cancel the transaction. Only
execute the ROLLBACK statement.

7. Highlight this and execute the written SELECT statement against the HR.Employees table again.

8. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab18\Solution\55 - Lab Exercise 1 - Task 3_2 Result.txt. Notice that the two new rows are
no longer present in the table.

 Task 5: Clear the Modifications Against the HR.Employees Table
 Execute the provided T-SQL code:

DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

Results: After this exercise, you should be able to control a transaction using the BEGIN TRAN, COMMIT,
and ROLLBACK statements.

Exercise 2: Adding Error Handling to a CATCH Block

Scenario
In the previous module, you learned how to add error handling to T-SQL code. Now you will practice how
to properly control a transaction by testing to see if an error occurred.

The main tasks for this exercise are as follows:

1. Observe the Provided T-SQL Code

2. Delete the Previously Inserted Row in the HR.Employees Table

3. Abort Both INSERT Statements If an Error Occurs

4. Clear the Modifications Against the HR.Employees Table

 Task 1: Observe the Provided T-SQL Code
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. The IT department has provided T-SQL code that is similar to the code in the previous exercise:

SELECT empid, lastname, firstname
FROM HR.Employees
ORDER BY empid DESC;
GO
BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'10110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);
COMMIT TRAN;

3. Execute only the SELECT statement.

4. Observe and compare the results that you achieved with the desired results shown in the file 62 - Lab
Exercise 2 - Task 1_1 result.txt. Notice the number of employees in the HR.Employees table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-15

5. Execute the part of the T-SQL code that starts with a BEGIN TRAN statement and ends with the
COMMIT TRAN statement. You will get a conversion error in the second INSERT statement.

6. Again, execute only the SELECT statement.

7. Observe and compare the results that you achieved with the desired results shown in the file 63 - Lab
Exercise 2 - Task 1_2 Result.txt. Notice that, although an error showed inside the transaction block,
one new row was added to the HR.Employees table based on the first INSERT statement.

 Task 2: Delete the Previously Inserted Row in the HR.Employees Table
 Execute the provided T-SQL code to delete the row inserted from the previous task:

DELETE HR.Employees
WHERE empid IN (10, 11);DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

 Task 3: Abort Both INSERT Statements If an Error Occurs
1. Modify the provided T-SQL code to include a TRY/CATCH block that rolls back the entire transaction

if any of the INSERT statements throws an error:

BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'10110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);
COMMIT TRAN;

2. In the CATCH block, include a PRINT statement that prints the message “Rollback the transaction…” if
an error occurred and the message “Commit the transaction…” if no error occurred.

3. Execute the modified T-SQL code.

4. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab18\Solution\64 - Lab Exercise 2 - Task 3_1 Result.txt.

5. Write a SELECT statement against the HR.Employees table to see if any new rows were inserted (like
you did in exercise 1). Execute the SELECT statement.

6. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab18\Solution\65 - Lab Exercise 2 - Task 3_2 Result.txt.

 Task 4: Clear the Modifications Against the HR.Employees Table
 Execute the provided T-SQL code:

DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

Results: After this exercise, you should have a basic understanding of how to control a transaction inside
a TRY/CATCH block to efficiently handle possible errors.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
18-16 Implementing Transactions

Module Review and Takeaways
In this module, you have learned how to:

 Describe transactions and the differences between batches and transactions.

 Describe batches and how they are handled by SQL Server.

 Create and manage transactions with transaction control language (TCL) statements.

 Use SET XACT_ABORT to define SQL Server's handling of transactions outside TRY/CATCH blocks.

Review Question(s)
Question: What happens to a nested transaction when the outer transaction is rolled back?

Question: When a runtime error occurs in a transaction and SET XACT_ABORT is ON, is the
transaction always automatically rolled back?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 18-17

Course Evaluation

Your evaluation of this course will help Microsoft understand the quality of your learning experience.

Please work with your training provider to access the course evaluation form.

Microsoft will keep your answers to this survey private and confidential and will use your responses to
improve your future learning experience. Your open and honest feedback is valuable and appreciated.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-1

Module 1: Introduction to Microsoft SQL Server 2016

Lab: Working with SQL Server 2016 Tools
Exercise 1: Working with SQL Server Management Studio

 Task 1: Open Microsoft SQL Server Management Studio
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are running.

2. Log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

3. Start SQL Server Management Studio.

4. In the Connect to Server dialog box, click Cancel.

5. Close the Object Explorer window by clicking the Close icon.

6. Close the Solution Explorer window by clicking the Close icon.

7. To open the Object Explorer pane, on the View menu, click Object Explorer (or press F8).

8. To open the Solution Explorer pane, on the View menu, click Solution Explorer (or press Ctrl+Alt+L).

 Task 2: Configure the Editor Settings
1. In SQL Server Management Studio, on the Tools menu, click Options.

2. In the Options dialog box, expand the Environment option, and then click Fonts and Colors.

3. In the Show settings for list, click Text Editor.

4. In the Size box, set the font size to 14.

5. In the left pane, expand Text Editor, expand Transact-SQL, and then click IntelliSense.

6. In the Transact-SQL IntelliSense Settings section, clear the Enable IntelliSense check box.

7. In the left pane, under Transact-SQL, click Tabs, and then change the Tab size to 6.

8. In the left pane, expand Query Results, expand SQL Server, and then click Results to Grid.

9. Select the Include column headers when copying or saving the results check box, and then click
OK.

Results: After this exercise, you should have opened SSMS and configured editor settings.

Exercise 2: Creating and Organizing T-SQL Scripts

 Task 1: Create a Project
1. On the File menu, point to New, and then click Project.

2. In the New Project dialog box, click SQL Server Scripts.

3. In the Name box, type MyFirstProject.

4. In the Location box, type D:\Labfiles\Lab01\Starter, and then click OK to create the new project.

5. In Solution Explorer, under MyFirstProject, right-click the Queries folder, and then click New Query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-2 Querying Data with Transact-SQL

6. In the Connect to Database Engine dialog box, click Cancel.

7. Under the Queries folder, right-click SQLQuery1.sql, click Rename, type MyFirstQueryFile, and
then press Enter.

8. On the File menu, click Save All.

 Task 2: Add an Additional Query File
1. In Solution Explorer, right-click the Queries folder, and then click New Query.

2. In the Connect to Database Engine dialog box, click Cancel.

3. In the Queries folder, right-click SQLQuery1.sql, click Rename, type MySecondQueryFile, and then
press Enter.

4. On the taskbar, click File Explorer.

5. In File Explorer, navigate to the D:\Labfiles\Lab01\Starter\MyFirstProject\MyFirstProject folder to
see where the files have been created.

6. In SQL Server Management Studio, in Solution Explorer, right-click MySecondQueryFile.sql, and
then click Remove.

7. In the Microsoft SQL Server Management Studio dialog box, click Remove.

8. In File Explorer, press F5 to refresh, notice that the file MySecondQueryFile.sql is still there.

9. In SQL Server Management Studio Solution, in Solution Explorer, right-click MyFirstQueryFile.sql,
and then click Remove.

10. In the Microsoft SQL Server Management Studio dialog box, click Delete.

11. In File Explorer, press F5 to refresh, notice that the MyFirstQueryFile.sql file has been deleted.

 Task 3: Reopen the Created Project
1. In SQL Server Management Studio Solution, on the File menu, click Save All.

2. On the File menu, click Exit to close the project and SQL Server Management Studio.

3. Open SQL Server Management Studio.

4. In the Connect to Server dialog box, click Cancel.

5. On the File menu, point to Open, and then click Project/Solution.

6. In the Open Project dialog box, navigate to the D:\Labfiles\Lab01\Starter\MyFirstProject folder,
click MyFirstProject.ssmssln, and then click Open.

7. In File Explorer, navigate to the D:\Labfiles\Lab01\Starter\MyFirstProject\MyFirstProject folder.

8. Drag the MySecondQueryFile.sql file to the Queries folder in Solution Explorer.

9. On the File menu, click Save All.

Results: After this lab exercise, you will have a basic understanding of how to create a project in SSMS
and add T-SQL query files to it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-3

Exercise 3: Using SQL Server 2016 Technical Documentation

 Task 1: Launch SQL Server 2016 Technical Documentation
1. On the Start page, type manage help settings, and then click Manage Help Settings.

2. In the Help Library Manager - Microsoft Help Viewer 1.0 dialog box, click Choose online or local
help.

3. On the Settings page, under Set your preferred help experience, click I want to use online help,
and then click OK.

4. If I want to use online help is already selected, press Cancel.

5. On the Settings page, click Exit to close the Help Library Manager.

 Task 2: Use SQL Server 2016 Technical Documentation
1. On the Start page, type sql server documentation, and then click SQL Server Documentation.

2. If the Online Help Consent dialog box appears, click Yes.

3. Browse the help article, and then close Internet Explorer.

Results: After this exercise, you will understand how to find the information you need in SQL Server 2016
Technical Documentation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-1

Module 2: Introduction to T-SQL Querying

Lab: Introduction to T-SQL Querying
Exercise 1: Executing Basic SELECT Statements

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab02\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. Press any key to close the command window.

 Task 2: Execute the T-SQL Script
1. On the taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server dialog box, in the Server name box, type MIA-SQL, ensure Windows
Authentication is selected, and then click Connect.

3. On the File menu, point to Open, and then click Project/Solution.

4. In the Open Project dialog box, browse to the D:\Labfiles\Lab02\Starter\Project folder, and then
double-click Project.ssmssln.

5. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

6. When the query window opens, click Execute. You will notice that the TSQL database is selected in
the Available Databases box. The Available Databases box displays the current database context
under which the T-SQL script will run. This information is also visible on the status bar.

 Task 3: Execute a Part of the T-SQL Script
1. Highlight the following text under the Task 2 description:

SELECT firstname
 ,lastname
 ,city
 ,country
FROM HR.Employees;

 Note: To highlight it, move the pointer over the statement while pressing the left mouse
button or use the arrow keys to move the pointer while pressing the Shift key.

2. Click Execute. It is very important to understand that you can highlight a specific part of the code
inside the T-SQL script, and execute only that part. If you click Execute without selecting any part of
the code, the whole T-SQL script will be executed. If you highlight a specific part of the code by
mistake, the SQL Server will attempt to run only that part.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-2 Querying Data with Transact-SQL

3. On the File menu, click Close.

4. Close SQL Server Management Studio, without saving any changes.

Results: After this exercise, you should know how to open the T-SQL script and execute the whole script
or just a specific statement inside it.

Exercise 2: Executing Queries That Filter Data Using Predicates

 Task 1: Execute the T-SQL Script
1. On the taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server dialog box, in the Server name box, type MIA-SQL, and then click
Options.

3. On the Connection Properties tab, in the Connect to database list, ensure <default> is selected,
and then click Connect.

4. On the File menu, point to Open, and then click Project/Solution.

5. In the Open Project dialog box, browse to the D:\Labfiles\Lab02\Starter\Project folder, and then
double-click Project.ssmssln.

6. In Solution Explorer, expand Queries, and then double-click 61 - Lab Exercise 2.sql.

7. In the query pane, click Execute.

8. Notice that you get the error message:

Msg 208, Level 16, State 1, Line 18
Invalid object name 'HR.Employees'.

Why do you think this happened? This error is very common when you are beginning to learn T-SQL.

9. The message tells you that SQL Server could not find the object HR.Employees. This is because the
current database context is set to the master database (look at the Available Databases box where the
current database is displayed), but the IT department supplied T-SQL scripts to be run against the
TSQL database. So you need to change the database context from master to TSQL. You will learn how
to change the database context in the next task.

 Task 2: Change the Database Context with the GUI
1. In the Available Databases list, click TSQL to change the database context.

2. Click Execute.

3. Notice that the result from the SELECT statement returns fewer rows than the one in exercise 1. That
is because it has a predicate in the WHERE clause to filter out all rows that do not have the value
USA in the country column. Only rows for which the logical expression evaluates to TRUE are
returned by the WHERE phase to the subsequent logical query processing phase.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-3

 Task 3: Change the Database Context with T-SQL
1. In the script 61 - Lab Exercise 2.sql, find the lines:

--USE TSQL;
--Go

2. Delete the first two characters, so that the line looks like this:

USE TSQL;
GO

3. By deleting these two characters, you have removed the comment mark. Now the line will not be
ignored by SQL Server.

4. On the File menu, click Save 61 - Lab Exercise 2.sql.

5. On the File menu, click Close. This will close the T-SQL script.

6. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

7. Click Execute.

8. Observe the results. Why did the script execute with no errors? The script now includes the
uncommented USE TSQL; statement. When you execute the whole T-SQL script, the USE statement
sets the database context to the TSQL database. The next statement in the T-SQL script, the SELECT,
then executes against the TSQL database.

9. On the File menu, click Close.

Results: After this exercise, you should have a basic understanding of database context and how to
change it.

Exercise 3: Executing Queries That Sort Data Using ORDER BY

 Task 1: Execute the Initial T-SQL Script
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. Click Execute.

3. Notice that the result window is empty. All the statements inside the T-SQL script are commented
out, so SQL Server ignores them.

 Task 2: Uncomment the Needed T-SQL Statements and Execute Them
1. Locate the line:

--USE TSQL;

2. Delete the two characters before the USE statement. The line should now look like this:

USE TSQL;

3. Locate the block comment start element /* after the Task 1 description and delete it.

4. Locate the block comment end element */ and delete it.
Any text residing within a block starting with /* and ending with */ is treated as a block comment and
is ignored by SQL Server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-4 Querying Data with Transact-SQL

5. Highlight the statement:

USE TSQL;

6. Click Execute. The database context is now set to the TSQL database.

7. Highlight the statement:

SELECT
firstname, lastname, city, country
FROM HR.Employees
WHERE country = 'USA'
ORDER BY lastname;

8. Click Execute.

9. Observe the result and notice that the rows are sorted by the lastname column in ascending order.

Results: After this exercise, you should have an understanding of how comments can be specified inside
T-SQL scripts. You will also have an appreciation of how to order the results of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-1

Module 3: Writing SELECT Queries

Lab: Writing Basic SELECT Statements
Exercise 1: Writing Simple SELECT Statements

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab03\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. When the script has finished, press Enter.

 Task 2: View All the Tables in the ADVENTUREWORKS Database in Object Explorer
1. On the taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server dialog box, in the Server name box, type MIA-SQL, and then click
Options.

3. Under Connection Properties, in the Connect to database list, click <Browse server>.

4. In the Browse for Databases dialog box, click Yes.

5. In the Browse Server for Databases dialog box, under User Databases, click TSQL, and then click
OK.

6. In the Connect to Server dialog box, on the Login tab, in the Authentication list, click Windows
Authentication, and then click Connect.

7. In Object Explorer, under MIA-SQL, expand Databases, expand TSQL, and then expand Tables.

8. Under Tables, notice that there are four table objects in the Sales schema:

 Sales.Customers

 Sales.OrderDetails

 Sales.Orders

 Sales.Shippers

 Task 3: Write a Simple SELECT Statement That Returns All Rows and Columns from a
Table
1. On the File menu, point to Open, and then click Project/Solution.

2. In the Open Project dialog box, navigate to the D:\Labfiles\Lab03\Starter\Project folder, and then
double-click Project.ssmssln.

3. In Solution Explorer, expand Queries, and then double-click Lab Exercise 1.sql.

4. In the query window, highlight the statement USE TSQL;, and then click Execute.

5. In the query pane, after the Task 2 description, type the following query:

SELECT *
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-2 Querying Data with Transact-SQL

6. Highlight the query you typed, and click Execute.

7. In the query pane, type the following code after the first query:

SELECT *
FROM

8. In Object Explorer, under MIA-SQL, under Databases, under TSQL, under Tables, click
Sales.Customers.

9. Drag the selected table into the query pane, after the FROM clause. Add a semicolon to the end
of the SELECT statement. Your finished query should look like this:

SELECT *
FROM [Sales].[Customers];

10. Highlight the written query, and click Execute.

 Task 4: Write a SELECT Statement That Returns Specific Columns
1. In Object Explorer, expand Sales.Customers, expand Columns and observe all the columns in the

Sales.Customers table.

2. In the query pane, after the Task 3 description, type the following query:

SELECT contactname, address, postalcode, city, country
FROM Sales.Customers;

3. Highlight the written query, and click Execute.

4. Observe the result. How many rows are affected by the last query? There are multiple ways to answer
this question using SQL Server Management Studio. One way is to select the previous query and click
Execute. The total number of rows affected by the executed query is written in the Results pane
under the Messages tab:

(91 row(s) affected)

Another way is to look at the status bar displayed below the Results pane. On the left side of the
status bar, there is a message stating: “Query executed successfully.” On the right side, the total
number of rows affected by the current query is displayed (91 rows).

Results: After this exercise, you should know how to create simple SELECT statements to analyze existing
tables.

Exercise 2: Eliminating Duplicates Using DISTINCT

 Task 1: Write a SELECT Statement That Includes a Specific Column
1. In Solution Explorer, double-click Lab Exercise 2.sql.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-3

3. In the query pane, after the Task 1 description, type the following query:

SELECT country
FROM Sales.Customers;

4. Highlight the written query, and click Execute.

5. Observe that you have multiple rows with the same values. This occurs because the Sales.Customers
table has multiple rows with the same value for the country column.

 Task 2: Write a SELECT Statement That Uses the DISTINCT Clause
1. Highlight the previous query, and then on the Edit menu, click Copy.

2. In the query window, click the line after the Task 2 description.

3. On the Edit menu, click Paste. You have now copied the previous query to the same query window
after the task 2 description.

4. Modify the query by typing DISTINCT after the SELECT clause. Your query should look like this:

SELECT DISTINCT country
FROM Sales.Customers;

5. Highlight the written query, and click Execute.

6. Observe the result and answer these questions:

How many rows did the query in task 1 return?

To answer this question, you can highlight the query written under the task 1 description, click Execute,
and read the Results pane. (If you forgot how to access this pane, look at task 4 in exercise 1.) The
number of rows affected by the query is 91.

How many rows did the query in task 2 return?

To answer this question, you can highlight the query written under the task 2 description, click Execute,
and read the Results pane. The number of rows affected by the query is 21. This means that there are
21 distinct values for the country column in the Sales.Customers table.

Under which circumstances do the following queries against the Sales.Customers table return the
same result?

SELECT city, region FROM Sales.Customers;
SELECT DISTINCT city, region FROM Sales.Customers;

If all combinations of values in the city and region columns in the Sales.Customers table are unique,
both queries would return the same number of rows. If they are not unique, the first query would
return more rows than the second one with the DISTINCT clause.

Is the DISTINCT clause applied to all columns specified in the query—or just the first column?

The DISTINCT clause is always applied to all columns specified in the SELECT list. It is very important
to remember that the DISTINCT clause does not just apply to the first column in the list.

Results: After this exercise, you should understand how to return only the different (distinct) rows in the
result set of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-4 Querying Data with Transact-SQL

Exercise 3: Using Table and Column Aliases

 Task 1: Write a SELECT Statement That Uses a Table Alias
1. In Solution Explorer, double-click Lab Exercise 3.sql.

2. In the query window, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT c.contactname, c.contacttitle
FROM Sales.Customers AS c;

Tip: To use the IntelliSense feature when entering column names in a SELECT statement, you can use
keyboard shortcuts. To enable IntelliSense, press Ctrl+Q+I. To list all the alias members, position your
pointer after the alias and dot (for example, after “c.”) and press Ctrl+J.

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement That Uses Column Aliases
1. In the query pane, after the Task 2 description, type the following query:

SELECT c.contactname AS Name, c.contacttitle AS Title, c.companyname AS [Company
Name]
FROM Sales.Customers AS c;

Observe that the column alias [Company Name] is enclosed in square brackets. Column names and
aliases with embedded spaces or reserved keywords must be delimited. This example uses square
brackets as the delimiter, but you can also use the ANSI SQL standard delimiter of double quotes, as
in “Company Name”.

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement That Uses Table and Column Aliases
1. In the query pane, after the Task 3 description, type the following query:

SELECT p.productname AS [Product Name]
FROM Production.Products AS p;

2. Highlight the written query, and click Execute.

 Task 4: Analyze and Correct the Query
1. Highlight the written query under the Task 4 description, and click Execute.

2. Observe the result. Note that only one column is retrieved. The problem is that the developer forgot
to add a comma after the first column name, so SQL Server treated the second word after the first
column name as an alias. For this reason, it is best practice to always use AS when specifying aliases—
then it is easier to spot such errors.

3. Correct the query by adding a comma after the first column name. The corrected query should look
like this:

SELECT city, country
FROM Sales.Customers;

Results: After this exercise, you will know how to use aliases for table and column names.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-5

Exercise 4: Using a Simple CASE Expression

 Task 1: Write a SELECT Statement
1. In Solution Explorer, double-click Lab Exercise 4.sql.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT p.categoryid, p.productname
FROM Production.Products AS p;

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement That Uses a CASE Expression
1. In the query pane, after the Task 2 description, type the following:

SELECT p.categoryid, p.productname,
CASE
WHEN p.categoryid = 1 THEN 'Beverages'
WHEN p.categoryid = 2 THEN 'Condiments'
WHEN p.categoryid = 3 THEN 'Confections'
WHEN p.categoryid = 4 THEN 'Dairy Products'
WHEN p.categoryid = 5 THEN 'Grains/Cereals'
WHEN p.categoryid = 6 THEN 'Meat/Poultry'
WHEN p.categoryid = 7 THEN 'Produce'
WHEN p.categoryid = 8 THEN 'Seafood'
ELSE 'Other'
END AS categoryname
FROM Production.Products AS p;

This query uses a CASE expression to add a new column. Note that, when you have a dynamic list of
possible values, you usually store them in a separate table. However, for this example, a static list of
values is being supplied.

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement That Uses a CASE Expression to Differentiate
Campaign-Focused Products
1. Highlight the previous query, and then on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description.

3. On the Edit menu, click Paste. You have now copied the previous query to the same query window
after the task 3 description.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-6 Querying Data with Transact-SQL

4. Add a new column using an additional CASE expression. Your query should look like this:

SELECT p.categoryid, p.productname,
 CASE
 WHEN p.categoryid = 1 THEN 'Beverages'
 WHEN p.categoryid = 2 THEN 'Condiments'
WHEN p.categoryid = 3 THEN 'Confections'
 WHEN p.categoryid = 4 THEN 'Dairy Products'
 WHEN p.categoryid = 5 THEN 'Grains/Cereals'
 WHEN p.categoryid = 6 THEN 'Meat/Poultry'
 WHEN p.categoryid = 7 THEN 'Produce'
 WHEN p.categoryid = 8 THEN 'Seafood'
 ELSE 'Other'
 END AS categoryname,
 CASE
 WHEN p.categoryid IN (1, 7, 8) THEN 'Campaign Products'
 ELSE 'Non-Campaign Products'
 END AS iscampaign
FROM Production.Products AS p;

5. Highlight the written query, and click Execute.

6. In the result, observe that the first CASE expression uses the simple form, whereas the second uses the
searched form.

Results: After this exercise, you should know how to use CASE expressions to write simple conditional
logic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-1

Module 4: Querying Multiple Tables

Lab: Querying Multiple Tables
Exercise 1: Writing Queries That Use Inner Joins

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab04\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, press Enter, wait for the script to finish, and then press any key.

 Task 2: Write a SELECT Statement That Uses an Inner Join
1. On the taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server dialog box, in the Server name box, type MIA-SQL, and then click
Connect.

3. On the File menu, point to Open, and then click Project/Solution.

4. In the Open Project dialog box, browse to the D:\Labfiles\Lab04\Starter\Project folder, and then
double-click Project.ssmssln.

5. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

6. In the query window, highlight the statement USE TSQL;, and click Execute.

7. In the query pane, after the Task 1 description, type the following query:

SELECT
p.productname, c.categoryname
FROM Production.Products AS p
INNER JOIN Production.Categories AS c ON p.categoryid = c.categoryid;

8. Highlight the written query, and click Execute.

9. Observe the result and answer these questions:

 Which column did you specify as a predicate in the ON clause of the join? Why?

In this query, the categoryid column is the predicate. By intuition, most people would say
that this is the predicate because the column exists in both input tables. By the way, using
the same name for columns that contain the same data but in different tables is a good
practice in data modeling. Another possibility is to check for referential integrity through
primary and foreign key information using SQL Server Management Studio. If there are no
primary or foreign key constraints, you will have to acquire information about the data
model from the developer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-2 Querying Data with Transact-SQL

 Let us say that there is a new row in the Production.Categories table and this new product
category does not have any products associated with it in the Production.Products table. Would
this row be included in the result of the SELECT statement written under the task 1 description?

No, because an inner join retrieves only the matching rows based on the predicate from both
input tables. Since the new value for the categoryid is not present in the categoryid column
in the Production.Products table, there would be no matching rows in the result of the
SELECT statement.

Results: After this exercise, you should know how to use an inner join between two tables.

Exercise 2: Writing Queries That Use Multiple-Table Inner Joins

 Task 1: Execute the T-SQL Statement
1. In Solution Explorer, double-click the 61 - Lab Exercise 2.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. Under the Task 1 description, highlight the written query, and click Execute.

4. Observe the error message:

Ambiguous column name 'custid'.

5. This error occurred because the custid column appears in both tables; you have to specify from which
table you would like to retrieve the column values.

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 2 description, and on the Edit menu, click Paste.

3. Add the column prefix Customers to the existing query so that it looks like this:

SELECT
Customers.custid, contactname, orderid
FROM Sales.Customers
INNER JOIN Sales.Orders ON Customers.custid = Orders.custid;

4. Highlight the modified query and click Execute.

 Task 3: Change the Table Aliases
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement to use table aliases. Your query should look like this:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

4. Highlight the written query and click Execute.

5. Compare these results with the Task 2 results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-3

6. Modify the T-SQL statement to include a full source table name as the column prefix. Your query
should now look like this:

SELECT
Customers.custid, Customers.contactname, Orders.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

7. Highlight the written query and click Execute.

8. Observe the error messages:

Msg 4104, Level 16, State 1, Line 57
The multipart identifier "Customers.custid" could not be bound.
Msg 4104, Level 16, State 1, Line 57
The multipart identifier "Customer.contactname" could not be bound.
Msg 4104, Level 16, State 1, Line 57
The multipart identifier "Orders.orderid" could not be bound.

You received these error messages as, because you are using a different table alias, the full source
table name you are referencing as a column prefix no longer exists. Remember that the SELECT clause
is evaluated after the FROM clause, so you must use the table aliases when specifying columns in the
SELECT clause.

9. Modify the SELECT statement so that it uses the correct table aliases. Your query should look like this:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

10. Highlight the written query and click Execute.

 Task 4: Add an Additional Table and Columns
1. In the query pane, after the Task 4 description, type the following query:

SELECT
c.custid, c.contactname, o.orderid, d.productid, d.qty, d.unitprice
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid;

2. Highlight the written query, and click Execute.

3. Observe the result. Remember that, when you have a multiple-table inner join, the logical query
processing is different from the physical implementation. In this case, it means that you cannot
guarantee the order in which the SQL Server optimizer will process the tables. For example, you
cannot guarantee that the Sales.Customers table will be joined first with the Sales.Orders table, and
then with the Sales.OrderDetails table.

Results: After this exercise, you should have a better understanding of why aliases are important and how
to do a multiple-table join.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-4 Querying Data with Transact-SQL

Exercise 3: Writing Queries That Use Self Joins

 Task 1: Write a Basic SELECT Statement
1. In Solution Explorer, double-click the 71 - Lab Exercise 3.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid
FROM HR.Employees AS e;

4. Highlight the written query and click Execute.

5. Observe that the query retrieved nine rows.

 Task 2: Write a Query That Uses a Self Join
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, after the Task 2 description, click the line, and on the Edit menu, click Paste.

3. Modify the query by adding a self join to get information about the managers. The query should look
like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid;

4. Highlight the written query and click Execute.

5. Observe that the query retrieved eight rows and answer these questions:

 Is it mandatory to use table aliases when writing a statement with a self join? Can you use a full
source table name as an alias?

You must use table aliases. You cannot use the full source table name as an alias when
referencing both input tables. Eventually, you could use a full source table name as an alias for
one input table and another alias for the second input table.

 Why did you get fewer rows in the result from the T-SQL statement under the task 2 description,
compared to the result from the T-SQL statement under the task 1 description?

6. In task 2’s T-SQL statement, the inner join used an ON clause based on manager information (column
mgrid). The employee who is the CEO has a missing value in the mgrid column, so this row is not
included in the result.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
self joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-5

Exercise 4: Writing Queries That Use Outer Joins

 Task 1: Write a SELECT Statement That Uses an Outer Join
1. In Solution Explorer, double-click the 81 - Lab Exercise 4.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid;

4. Highlight the written query and click Execute.

5. Inspect the result. Notice that the custid 22 and custid 57 rows have a missing value in the orderid
column. This is because there are no rows in the Sales.Orders table for these two values of the custid
column. In business terms, this means that there are currently no orders for these two customers.

Results: After this exercise, you should have a basic understanding of how to write T-SQL statements that
use outer joins.

Exercise 5: Writing Queries That Use Cross Joins

 Task 1: Execute the T-SQL Statement
1. In Solution Explorer, double-click the 91 - Lab Exercise 5.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. Under the Task 1 description, highlight the T-SQL code and click Execute. Don’t worry if you do not
understand the provided T-SQL code, as it is used here to provide a more realistic example for a cross
join in the next task.

 Task 2: Write a SELECT Statement That Uses a Cross Join
1. In the query pane, after the Task 2 description, type the following query:

SELECT
e.empid, e.firstname, e.lastname, c.calendardate
FROM HR.Employees AS e
CROSS JOIN HR.Calendar AS c;

2. Highlight the written query and click Execute.

3. Observe that the query retrieved 3,294 rows and that there are nine rows in the HR.Employees table.
Because a cross join produces a Cartesian product of both inputs, it means that there are 366
(3,294/9) rows in the HR.Calendar table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-6 Querying Data with Transact-SQL

 Task 3: Drop the HR.Calendar Table
 Under the Task 3 description, highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-1

Module 5: Sorting and Filtering Data

Lab: Sorting and Filtering Data
Exercise 1: Write Queries that Filter Data Using a WHERE Clause

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab05\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. At the command prompt, when prompted, press any key.

 Task 2: Write a SELECT Statement Using a WHERE Clause
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab05\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and then click Execute.

6. In the query pane, type the following query after the Task 1 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
country = N'Brazil';

7. Highlight the query and click Execute.

Note the use of the “N” prefix for the character literal ‘Brazil’. This prefix is used because the country
column is a Unicode data type. When expressing a Unicode character literal, you need to specify the
character “N” (for National) as a prefix. If the “N” is omitted, then the query may still run successfully.
However, the safest way is to include the “N” every time, to ensure the results are predictable. You will
learn more about data types in the next module.

 Task 3: Write a SELECT Statement Using an IN Predicate in the WHERE Clause
1. In the query pane, type the following query after the Task 2 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
country IN (N'Brazil', N'UK', N'USA');

2. Highlight the query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-2 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause
1. In the query pane, type the following query after the Task 3 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
contactname LIKE N'A%';

2. Remember that the percent sign (%) wildcard represents a string of any size (including an empty
string), whereas the underscore (_) wildcard represents a single character.

3. Highlight the written query and click Execute.

 Task 5: Observe the T-SQL Statement Provided by the IT Department
1. Highlight the T-SQL statement provided under the Task 4a description, and click Execute.

2. Highlight the provided T-SQL statement, and on the toolbar, click Edit, and thenclick Copy.

3. In the query window, click the line after the Task 4b description, and on the toolbar, click Edit, and
then click Paste.

4. Modify the query so that it looks like this:

SELECT
c.custid, c.companyname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE
c.city = N'Paris';

5. Highlight the modified query, and click Execute.

6. Observe the result. Is it the same as that of the first SQL statement?

The result is not the same. When you specify the predicate in the ON clause, the left outer join
preserves all the rows from the left table (Sales.Customers) and adds only the matching rows from
the right table (Sales.Orders), based on the predicate in the ON clause. This means that all the
customers will show up in the output, but only the ones from Paris will have matching orders. When
you specify the predicate in the WHERE clause, the query will filter only the Paris customers. So be
aware that, when you use an outer join, the result of a query where the predicate is specified in the
ON clause can differ from the result of a query in which the predicate is specified in the WHERE
clause. (When using an INNER JOIN, the results are always the same.) This is because the ON
predicate is matching—it defines which rows from the nonpreserved side to match to those from the
preserved side. The WHERE predicate is a filtering predicate—if a row from either side doesn’t satisfy
the WHERE predicate, the row is filtered out.

 Task 6: Write a SELECT Statement to Retrieve Customers Without Orders
1. In the query pane, type the following query after the Task 5 description:

SELECT
c.custid, c.companyname
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE o.custid IS NULL;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-3

2. Highlight the written query and click Execute.

It is important to note that, when you are looking for a NULL, you should use the IS NULL operator,
not the equality operator. The equality operator will always return UNKNOWN when you compare
something to a NULL. It will even return UNKNOWN when you compare two NULLs.
The choice of which attribute to filter from the nonpreserved side of the join is also important. You
should choose an attribute that can have a NULL only when the row is an outer row (for example, a
NULL originating from the base table). For this purpose, three cases are safe to consider:

 A primary key column. A primary key column cannot be NULL. Therefore, a NULL in such a
column can only mean that the row is an outer row.

 A join column. If a row has a NULL in the join column, it is filtered out by the second phase of the
join. So a NULL in such a column can only mean that it is an outer row.

 A column defined as NOT NULL. A NULL in a column that is defined as NOT NULL can only mean
that the row is an outer row.

Results: After this exercise, you should be able to filter rows of data from one or more tables by using
WHERE predicates with logical operators.

Exercise 2: Write Queries that Sort Data Using an ORDER BY Clause

 Task 1: Write a SELECT Statement Using an ORDER BY Clause
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
c.custid, c.contactname, o.orderid, o.orderdate
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE
o.orderdate >= '20080401'
ORDER BY
o.orderdate DESC, c.custid ASC;

4. Highlight the written query and click Execute.

Notice the date filter. It uses a literal (constant) of a date. SQL Server recognizes “20080401” as a
character string literal, and not as a date and time literal. However, because the expression involves
two operands of different types, one needs to be implicitly converted to the other’s type. In this
example, the character string literal is converted to the column’s data type (DATETIME) because
character strings are considered lower in terms of data type precedence—with respect to date and
time data types. Data type precedence and working with date values are covered in detail in the next
module.

Also notice that the character string literal follows the format “yyyymmdd”. Using this format is a best
practice because SQL Server knows how to convert it to the correct date, regardless of the language
settings.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-4 Querying Data with Transact-SQL

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Highlight the written query under the Task 2 description, and click Execute.

2. Observe the error message:

Invalid column name 'mgrlastname'.

3. This error occurred because the WHERE clause is evaluated before the SELECT clause and, at that
time, the column did not have an alias. To fix this problem, you must use the source column name
with the appropriate table alias. Modify the T-SQL statement to look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
WHERE
m.lastname = N'Buck';

4. Highlight the written query and click Execute.

 Task 3: Order the Result by the firstname Column
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3a description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement to remove the WHERE clause, and add an ORDER BY clause that uses the
source column name of m.firstname. Your query should look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
ORDER BY
m.firstname;

4. Highlight the written query and click Execute.

5. Highlight the previous query, and on the Edit menu, click Copy.

6. In the query window, click the line after the Task 3b description, and on the Edit menu, click Paste.

7. Modify the ORDER BY clause so that it uses the alias for the same column (mgrfirstname). Your query
should look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
ORDER BY
mgrfirstname;

8. Highlight the written query and click Execute.

9. Compare the results for Task 3a and 3b.

10. Why were you equally able to use a source column name or an alias column name?

Results: After this exercise, you should know how to use an ORDER BY clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-5

Exercise 3: Write Queries that Filter Data Using the TOP Option

 Task 1: Writing Queries That Filter Data Using the TOP Clause
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT TOP (20)
orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

4. Highlight the query and click Execute.

 Task 2: Use the OFFSET-FETCH Clause to Implement the Same Task
1. In the query pane, type the following query after the Task 2 description:

SELECT
orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

2. Highlight the query and click Execute.

Remember that the OFFSET-FETCH clause was a new functionality in SQL Server 2012 and will not
work in earlier versions. Unlike the TOP clause, the OFFSET-FETCH clause must be used with the
ORDER BY clause.

 Task 3: Write a SELECT Statement to Retrieve the Most Expensive Products
1. In the query pane, type the following query after the Task 3 description:

SELECT TOP (10) PERCENT
productname, unitprice
FROM Production.Products
ORDER BY unitprice DESC;

2. Highlight the query and click Execute.

Implementing this task with the OFFSET-FETCH clause is possible but not easy because, unlike TOP,
OFFSET-FETCH does not support a PERCENT option.

Results: After this exercise, you should have an understanding of how to apply the TOP option in the
SELECT clause of a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-6 Querying Data with Transact-SQL

Exercise 4: Write Queries that Filter Data Using the OFFSET-FETCH Clause

 Task 1: OFFSET-FETCH Clause to Fetch the First 20 Rows
1. In Solution Explorer, double-click 81 - Lab Exercise 4.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

4. Highlight the query and click Execute.

 Task 2: Use the OFFSET-FETCH Clause to Skip the First 20 Rows
1. In the query pane, type the following query after the Task 2 description:

SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

2. Highlight the query and click Execute.

 Task 3: Write a Generic Form of the OFFSET-FETCH Clause for Paging
1. The correct code is:

OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY

2. To test the above expression, type the following query after the Task 3 description:

DECLARE @pagenum int,
 @pagesize int;
SET @pagenum = 3;
SET @pagesize = 10;
SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;

3. Highlight the query and click Execute.

4. Compare your results with the recommended results in file D:\Labfiles\Lab05\Solution\84 - Lab
Exercise 4- Task 3 Result. Try changing the values for @pagenum and/or @pagesize, highlight the
whole query (including the DECLARE and SET statements) and then click Execute.

Results: After this exercise, you will be able to use OFFSET-FETCH to work page-by-page through a result
set returned by a SELECT statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-1

Module 6: Working with SQL Server 2016 Data Types

Lab: Working with SQL Server 2016 Data
Types
Exercise 1: Writing Queries That Return Date and Time Data

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab06\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. Wait for the script to finish, and when prompted, press any key.

 Task 2: Write a SELECT Statement to Retrieve Information About the Current Date
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab06\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and then click Execute.

6. In the query pane, after the Task 1 description, type the following query:

SELECT
CURRENT_TIMESTAMP AS currentdatetime,
CAST(CURRENT_TIMESTAMP AS DATE) AS currentdate,
CAST(CURRENT_TIMESTAMP AS TIME) AS currenttime,
YEAR(CURRENT_TIMESTAMP) AS currentyear,
MONTH(CURRENT_TIMESTAMP) AS currentmonth,
DAY(CURRENT_TIMESTAMP) AS currentday,
DATEPART(week, CURRENT_TIMESTAMP) AS currentweeknumber,
DATENAME(month, CURRENT_TIMESTAMP) AS currentmonthname;

This query uses the CURRENT_TIMESTAMP function to return the current date and time. You can also
use the SYSDATETIME function to get a more precise time element, compared to the
CURRENT_TIMESTAMP function.
Note that you cannot use the alias currentdatetime as the source in the second column calculation
because SQL Server supports a concept called all-at-once operations. This means that all expressions
appearing in the same logical query processing phase are evaluated as if they occurred at the same
point in time. This concept explains why, for example, you cannot refer to column aliases assigned in
the SELECT clause within the same SELECT clause, even if it seems intuitive that you should be able to.

7. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-2 Querying Data with Transact-SQL

 Task 3: Write a SELECT Statement to Return the Date Data Type
1. In the query pane, after the Task 2 description, type the following queries:

SELECT DATEFROMPARTS(2015, 12, 11) AS somedate;
SELECT CAST('20151211' AS DATE) AS somedate;
SELECT CONVERT(DATE, '12/11/2015', 101) AS somedate;

2. Highlight the written queries, and click Execute.

 Task 4: Write a SELECT Statement That Uses Different Date and Time Functions
1. In the query pane, after the Task 3 description, type the following query:

SELECT
DATEADD(month, 3, CURRENT_TIMESTAMP) AS threemonths,
DATEDIFF(day, CURRENT_TIMESTAMP, DATEADD(month, 3, CURRENT_TIMESTAMP)) AS diffdays,
DATEDIFF(week, '19920404', '20110916') AS diffweeks,
DATEADD(day, 1, EOMONTH(CURRENT_TIMESTAMP,-1)) AS firstday;

2. Highlight the written query, and click Execute.

 Task 5: Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as
Dates
1. Under the Task 4 description, highlight the written query, and click Execute.

2. In the query pane, type the following queries after the Task 4 description:

SELECT
isitdate,
CASE WHEN ISDATE(isitdate) = 1 THEN CONVERT(DATE, isitdate) ELSE NULL END AS
converteddate
FROM Sales.Somedates;
--Uses the TRY_CONVERT function:
SELECT
isitdate,
TRY_CONVERT(DATE, isitdate) AS converteddate
FROM Sales.Somedates;

The second query uses the TRY_CONVERT function. This function returns a value cast to the specified
data type if the casting succeeds; otherwise, it returns NULL. Don’t worry if you do not recognize the
type conversion functions, as they will be covered in the next module.

3. Highlight the written queries, and click Execute.

4. Observe the result and answer these questions:

 What is the difference between the SYSDATETIME and CURRENT_TIMESTAMP functions?

There are two main differences. First, the SYSDATETIME function provides a more precise time
element compared to the CURRENT_TIMESTAMP function. Second, the SYSDATETIME function
returns the data type datetime2(7), whereas the CURRENT_TIMESTAMP returns the data type
datetime.

 What is a language-neutral format for the data type date?

You can use the formats 'YYYYMMDD' or 'YYYY-MM-DD'.

Results: After this exercise, you should be able to retrieve date and time data using T-SQL.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-3

Exercise 2: Writing Queries That Use Date and Time Functions

 Task 1: Write a SELECT Statement to Retrieve Customers with Orders in a Given
Month
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT DISTINCT
custid
FROM Sales.Orders
WHERE
YEAR(orderdate) = 2008
AND MONTH(orderdate) = 2;

4. Highlight the written query, and click Execute.

Note that, as a performance enhancement, you could also write a query that uses a range format that
would utilize an index on Sales.Orders.orderdate. The query would then look like this:

SELECT DISTINCT
custid
FROM Sales.Orders
WHERE
orderdate >= '20080201'
AND orderdate < '20080301';

 Task 2: Write a SELECT Statement to Calculate the First and Last Day of the Month
1. In the query pane, after the Task 2 description, type the following query:

SELECT
CURRENT_TIMESTAMP AS currentdate,
DATEADD (day, 1, EOMONTH(CURRENT_TIMESTAMP, -1)) AS firstofmonth,
EOMONTH(CURRENT_TIMESTAMP) AS endofmonth;

2. Highlight the written query, and click Execute.

This query uses the EOMONTH function, which was added in SQL Server 2012.

 Task 3: Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days
of the Ordered Month
1. In the query pane, after the Task 3 description, type the following query:

SELECT
orderid, custid, orderdate
FROM Sales.Orders
WHERE
DATEDIFF(
day,
orderdate,
EOMONTH(orderdate)
) < 5;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-4 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10
Weeks of the Year 2007
1. In the query pane, after the Task 4 description, type the following query:

SELECT DISTINCT
d.productid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE
DATEPART(week, orderdate) <= 10
AND YEAR(orderdate) = 2007;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should know how to use the date and time functions.

Exercise 3: Writing Queries That Return Character Data

 Task 1: Write a SELECT Statement to Concatenate Two Columns
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
CONCAT(contactname, N' (city: ', city, N')') AS contactwithcity
FROM Sales.Customers;

4. Highlight the written query, and click Execute.

An alternate way to write this query would be to use the + (plus) operator:

SELECT
contactname + N' (city: ' + city + N')' AS contactwithcity
FROM Sales.Customers;

 Task 2: Add an Additional Column to the Concatenated String Which Might Contain
NULL
1. In the query pane, after the Task 2 description, type the following query:

SELECT
CONCAT(contactname, N' (city: ', city, N', region: ', region, N')') AS fullcontact
FROM Sales.Customers;

2. Highlight the written query, and click Execute.

An alternative way to write this query would be to use the + (plus) operator, which requires the
COALESCE function to replace a NULL with an empty string. Later modules will include more
examples of how to handle NULL.

SELECT
contactname + N' (city: ' + city + N', region: ' + COALESCE(region, '') + N')' AS
fullcontact
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-5

 Task 3: Write a SELECT Statement to Retrieve Customer Contacts Based on the First
Character in the Contact Name
1. In the query pane, after the Task 3 description, type the following query:

SELECT contactname, contacttitle
FROM Sales.Customers
WHERE contactname LIKE N'[A-G]%'
ORDER BY contactname;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should have an understanding of how to concatenate character data.

Exercise 4: Writing Queries That Use Character Functions

 Task 1: Write a SELECT Statement That Uses the SUBSTRING Function
1. In Solution Explorer, double-click 81 - Lab Exercise 4.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
contactname,
SUBSTRING(contactname, 0, CHARINDEX(N',', contactname)) AS lastname
FROM Sales.Customers;

4. Highlight the written query, and click Execute.

 Task 2: Write a Query to Retrieve the Contact’s First Name Using SUBSTRING
1. In the query pane, after the Task 2 description, type the following query:

SELECT
REPLACE(contactname, ',', '') AS newcontactname,
SUBSTRING(contactname, CHARINDEX(N',', contactname)+1, LEN(contactname)-
CHARINDEX(N',', contactname)+1) AS firstname
FROM Sales.Customers;

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Format the Customer ID
1. In the query pane, after the Task 3 description, type the following query:

SELECT
custid,
N'C' + RIGHT(REPLICATE('0', 5) + CAST(custid AS VARCHAR(5)), 5) AS custnewid
FROM Sales.Customers;

2. Highlight the written query, and click Execute.

An alternative way to write this query would be to use the FORMAT function. The query would then
look like this:

SELECT custid,
FORMAT(custid, N'\C00000') AS custnewid
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-6 Querying Data with Transact-SQL

 Task 4: Challenge: Write a SELECT Statement to Return the Number of Character
Occurrences
1. In the query pane, after the Task 4 description, type the following query:

SELECT
contactname,
LEN(contactname) - LEN(REPLACE(contactname, 'a', '')) AS numberofa
FROM Sales.Customers
ORDER BY numberofa DESC;

This elegant solution first returns the number of characters in the contact name, and then subtracts
the number of characters in the contact name without the character ‘a’. The result is stored in a new
column named numberofa.

2. Highlight the written query, and click Execute.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the character functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-1

Module 7: Using DML to Modify Data

Lab: Using DML to Modify Data
Exercise 1: Inserting Records with DML

Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab07\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. When the script has finished, press Enter.

 Task 2: Insert a Row
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using

Windows authentication.

2. In the File menu, point to Open, and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab07\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and double-click 01 Setup.sql.

5. On the toolbar, click Execute. When the script has executed, you should get the messages indicating
(9 row(s) affected), (88 row(s) affected) and (3 row(s) affected).

6. Close the 01 Setup.sql pane and open a new query window by clicking the New Query icon.

7. When the query window opens, type USE TempDB, followed by GO on the next line, and then, on
the toolbar, click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-2 Querying Data with Transact-SQL

8. Below the GO statement in the open window, type the following query:

INSERT INTO HR.Employees
(
 Title
, titleofcourtesy
, FirstName
, Lastname
, hiredate
, birthdate
, address
, city
, country
, phone
)
VALUES
(
 'Sales Representative'
, 'Mr'
, 'Laurence'
, 'Grider'
, '04/04/2013'
, '10/25/1975'
, '1234 1st Ave. S.E. '
, 'Seattle'
, 'USA'
, '(206)555-0105'
);

9. Click Execute.

10. Make sure the row has been inserted, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

 Task 3: Insert a Row with a SELECT Statement As the Data Provider
1. Click New Query.

2. In the query pane, type the following query:

USE TempDB
GO
INSERT INTO Sales.Customers
(
 Companyname
, contactname
, contacttitle
, address
, city
, region
, postalcode
, country
, phone
, fax
)
SELECT
 Companyname
, contactname
, contacttitle
, address
, city
, region
, postalcode
, country
, phone
, fax
FROM dbo.PotentialCustomers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-3

3. Click Execute.

4. Make sure that the rows have been inserted, and then close the window. You will be asked if you
want to save the query—you can choose where to save it and what to call it.

How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 42 - Lab Exercise 1b Solution.sql.

Results: After successfully completing this exercise, you will have one new employee and three new
customers.

Exercise 2: Update and Delete Records Using DML

 Task 1: Update Rows
1. Click New Query.

2. In the query pane, type the following query:

Use TempDB
GO
UPDATE Sales.Customers
SET contacttitle='Sales Consultant'
WHERE city='Berlin'AND contacttitle='Sales Representative';

3. Click Execute.

4. Make sure the rows have been modified, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.
How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 43 - Lab Exercise 2 Solution.sql.

 Task 2: Delete Rows
1. Click New Query.

2. In the query pane, type the following query:

USE TempDB
GO
DELETE FROM dbo.PotentialCustomers
WHERE contactname
IN('Taylor, Maurice','Mallit, Ken', 'Tiano, Mike');

3. Click Execute.

4. Make sure the rows have been deleted, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 44 - Lab Exercise 2b Solution.sql.

Results: After successfully completing this exercise, you will have updated all the records in the Customers
table that have a city of Berlin and a contacttitle of Sales Representative, to now have a contacttitle of
Sales Consultant. You will also have deleted the three records in the PotentialCustomers table, which have
already been added to the Customers table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-1

Module 8: Using Built-In Functions

Lab: Using Built-in Functions
Exercise 1: Writing Queries That Use Conversion Functions

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab08\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. Wait for the script to finish, and press Enter.

 Task 2: Write a SELECT Statement that Uses the CAST or CONVERT Function
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab08\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand the Queries folder, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and then click Execute.

6. In the query pane, type the following query after the Task 1 description:

SELECT N'The unit price for the ' + productname + N' is ' + CAST(unitprice AS
NVARCHAR(10)) + N' $.' AS productdesc
FROM Production.Products;

This query uses the CAST function rather than the CONVERT function. It is better to use the CAST
function because it is an ANSI SQL standard. You should use the CONVERT function only when you
need to apply a specific style during a conversion.

7. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Filter Rows Based on Specific Date Information
1. In the query pane, type the following query after the Task 2 description:

SELECT orderid, orderdate, shippeddate, COALESCE(shipregion, 'No region') AS
shipregion
FROM Sales.Orders
WHERE
orderdate >= CONVERT(DATETIME, '4/1/2007', 101)
AND orderdate <= CONVERT(DATETIME, '11/30/2007', 101)
AND shippeddate > DATEADD(DAY, 30, orderdate);

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-2 Querying Data with Transact-SQL

3. Note that you could also write a solution using the PARSE function. The query would look like this:

SELECT orderid, orderdate, shippeddate, COALESCE(shipregion, 'No region') AS
shipregion
FROM Sales.Orders
WHERE
orderdate >= PARSE('4/1/2007' AS DATETIME USING 'en-US')
AND orderdate <= PARSE('11/30/2007' AS DATETIME USING 'en-US')
AND shippeddate > DATEADD(DAY, 30, orderdate);

 Task 4: Write a SELECT Statement to Convert the Phone Number Information to an
Integer Value
1. In the query pane, type the following query after the Task 3 description:

SELECT
CONVERT(INT, REPLACE(REPLACE(REPLACE(REPLACE(phone, N'-', N''), N'(', ''), N')', ''),
' ', '')) AS phonenoasint
FROM Sales.Customers;

This query is trying to use the CONVERT function to convert phone numbers that include characters,
such as hyphens and parentheses, into an integer value.

2. Highlight the written query, and click Execute.

Observe the error message:

Conversion failed when converting the nvarchar value '67.89.01.23' to data type int.

Because you want to retrieve rows without conversion errors and have a NULL for those that produce
a conversion error, you can use the TRY_CONVERT function.

3. Modify the query to use the TRY_CONVERT function. The query should look like this:

SELECT
TRY_CONVERT(INT, REPLACE(REPLACE(REPLACE(REPLACE(phone, N'-', N''), N'(', ''), N')',
''), ' ', '')) AS phonenoasint
FROM Sales.Customers;

4. Highlight the written query, and click Execute. Observe the result. The rows that could not be
converted have a NULL.

Results: After this exercise, you should be able to use conversion functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-3

Exercise 2: Writing Queries That Use Logical Functions

 Task 1: Write a SELECT Statement to Mark Specific Customers Based on Their
Country and Contact Title
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
IIF(country = N'Mexico' AND contacttitle = N'Owner', N'Target group', N'Other') AS
segmentgroup, custid, contactname
FROM Sales.Customers;

The IIF function was new in SQL Server 2012. It was added mainly to support migrations from
Microsoft Access to SQL Server. You can use the CASE expression to achieve the same result.

4. Highlight the written query, and click Execute.

 Task 2: Modify the T-SQL Statement to Mark Different Customers
1. In the query pane, type the following query after the Task 2 description:

SELECT
IIF(contacttitle = N'Owner' OR region IS NOT NULL, N'Target group', N'Other') AS
segmentgroup, custid, contactname
FROM Sales.Customers;

2. Highlight the written query, and click Execute.

 Task 3: Create Four Groups of Customers
1. In the query pane, type the following query after the Task 3 description:

SELECT CHOOSE(custid % 4 + 1, N'Group One', N'Group Two', N'Group Three', N'Group
Four') AS segmentgroup, custid, contactname
FROM Sales.Customers;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should know how to use the logical functions.

Exercise 3: Writing Queries That Test for Nullability

 Task 1: Write a SELECT Statement to Retrieve the Customer Fax Information
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT contactname, COALESCE(fax, N'No information') AS faxinformation
FROM Sales.Customers;

This query uses the COALESCE function to retrieve customers’ fax information.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-4 Querying Data with Transact-SQL

4. Highlight the written query, and click Execute.

5. In the query pane, type the following query after the previous query:

SELECT contactname, ISNULL(fax, N'No information') AS faxinformation
FROM Sales.Customers;

This query uses the ISNULL function. What is the difference between the ISNULL and COALESCE
functions? COALESCE is a standard ANSI SQL function and ISNULL is not. So you should use the
COALESCE function.

6. Highlight the written query, and click Execute.

 Task 2: Write a Filter for a Variable That Could Be a Null
1. Highlight the query provided under the Task 2 description, and click Execute.

2. Modify the query so that it looks like this:

DECLARE @region AS NVARCHAR(30) = NULL;
SELECT
custid, region
FROM Sales.Customers
WHERE region = @region OR (region IS NULL AND @region IS NULL);

3. Highlight the modified query, and click Execute.

 Task 3: Write a SELECT Statement to Return All the Customers That Do Not Have a
Two-Character Abbreviation for the Region
1. In the query pane, type the following query after the Task 3 description:

SELECT custid, contactname, city, region
FROM Sales.Customers
WHERE
region IS NULL
OR LEN(region) <> 2;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should have an understanding of how to test for nullability.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-1

Module 9: Grouping and Aggregating Data

Lab: Grouping and Aggregating Data
Exercise 1: Writing Queries That Use the GROUP BY Clause

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab09\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a SELECT Statement to Retrieve Different Groups of Customers
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab09\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and click Execute.

6. In the query pane, type the following query after the Task 2 description:

SELECT
o.custid, c.contactname
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname;

7. Highlight the written query, and click Execute.

 Task 3: Add an Additional Column From the Sales.Customers Table
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement so that it adds an additional column. Your query should look like this:

SELECT
o.custid, c.contactname, c.city
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname;

4. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-2 Querying Data with Transact-SQL

5. Observe the error message:

Column 'Sales.Customers.city' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

Why did the query fail?

In a grouped query, there will be an error if you refer to an attribute that is not in the GROUP BY list
(such as the city column) or not an input to an aggregate function in any clause that is processed
after the GROUP BY clause.

6. Modify the SQL statement to include the city column in the GROUP BY clause. Your query should look
like this:

SELECT
o.custid, c.contactname, c.city
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname, c.city;

7. Highlight the written query, and click Execute.

 Task 4: Write a SELECT Statement to Retrieve the Customers with Orders for Each
Year
1. In the query pane, type the following query after the Task 4 description:

SELECT
custid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
WHERE empid = 5
GROUP BY custid, YEAR(orderdate)
ORDER BY custid, orderyear;

2. Highlight the written query, and click Execute.

 Task 5: Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a
Specific Year
1. In the query pane, type the following query after the Task 5 description:

SELECT
c.categoryid, c.categoryname
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
INNER JOIN Production.Categories AS c ON c.categoryid = p.categoryid
WHERE orderdate >= '20080101' AND orderdate < '20090101'
GROUP BY c.categoryid, c.categoryname;

2. Highlight the written query, and click Execute.

 Note: Important note regarding the use of the DISTINCT clause:
In all the tasks in Exercise 1, you could use the DISTINCT clause in the SELECT clause as an
alternative to using a grouped query. This is possible because aggregate functions are not being
requested.

Results: After this exercise, you should be able to use the GROUP BY clause in the T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-3

Exercise 2: Writing Queries That Use Aggregate Functions

 Task 1: Write a SELECT statement to Retrieve the Total Sales Amount Per Order
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
o.orderid, o.orderdate, SUM(d.qty * d.unitprice) AS salesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.orderid, o.orderdate
ORDER BY salesamount DESC;

4. Highlight the written query, and click Execute.

 Task 2: Add Additional Columns
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 2 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement so that it adds extra columns. Your query should look like this:

SELECT
o.orderid, o.orderdate,
SUM(d.qty * d.unitprice) AS salesamount,
COUNT(*) AS noofoderlines,
AVG(d.qty * d.unitprice) AS avgsalesamountperorderline
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.orderid, o.orderdate
ORDER BY salesamount DESC;

4. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve the Sales Amount Value Per Month
1. In the query pane, type the following query after the Task 3 description:

SELECT
YEAR(orderdate) * 100 + MONTH(orderdate) AS yearmonthno,
SUM(d.qty * d.unitprice) AS saleamountpermonth
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY YEAR(orderdate), MONTH(orderdate)
ORDER BY yearmonthno;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-4 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement to List All Customers with the Total Sales Amount
and Number of Order Lines Added
1. In the query pane, type the following query after the Task 4 description:

SELECT
c.custid, c.contactname,
SUM(d.qty * d.unitprice) AS totalsalesamount,
MAX(d.qty * d.unitprice) AS maxsalesamountperorderline,
COUNT(*) AS numberofrows,
COUNT(o.orderid) AS numberoforderlines
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON o.custid = c.custid
LEFT OUTER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY c.custid, c.contactname
ORDER BY totalsalesamount;

2. Highlight the written query, and click Execute.

3. Observe the result. Notice that the values in the numberofrows and numberoforderlines columns
are different. Why? All aggregate functions ignore NULLs except COUNT(*), which is why you
received the value 1 for the numberofrows column. When you used the orderid column in the
COUNT function, you received the value 0 because the orderid is NULL for customers without an
order.

Exercise 3: Writing Queries That Use Distinct Aggregate Functions
 Task 1: Modify a SELECT Statement to Retrieve the Number of Customers
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. Highlight the provided T-SQL statement after the Task 1 description, and click Execute.

4. Observe the result. Notice that the number of orders is the same as the number of customers. Why?
You are using the aggregate COUNT function on the orderid and custid columns and, because every
order has a customer, the COUNT function returns the same value. It does not matter if there are
multiple orders for the same customer, because you are not using a DISTINCT clause inside the
aggregate function. To get the correct number of distinct customers, you can modify the provided T-
SQL statement to include a DISTINCT clause.

5. Modify the provided T-SQL statement to include a DISTINCT clause. The query should look like this:

SELECT
YEAR(orderdate) AS orderyear,
COUNT(orderid) AS nooforders,
COUNT(DISTINCT custid) AS noofcustomers
FROM Sales.Orders
GROUP BY YEAR(orderdate);

6. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-5

 Task 2: Write a SELECT Statement to Analyze Segments of Customers
1. In the query pane, type the following query after the Task 2 description:

SELECT
SUBSTRING(c.contactname,1,1) AS firstletter,
COUNT(DISTINCT c.custid) AS noofcustomers,
COUNT(o.orderid) AS nooforders
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON o.custid = c.custid
GROUP BY SUBSTRING(c.contactname,1,1)
ORDER BY firstletter;

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve Additional Sales Statistics
1. In the query pane, type the following query after the Task 3 description:

SELECT
c.categoryid, c.categoryname,
SUM(d.qty * d.unitprice) AS totalsalesamount, COUNT(DISTINCT o.orderid) AS
nooforders,
SUM(d.qty * d.unitprice) / COUNT(DISTINCT o.orderid) AS avgsalesamountperorder
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
INNER JOIN Production.Categories AS c ON c.categoryid = p.categoryid
WHERE orderdate >= '20080101' AND orderdate < '20090101'
GROUP BY c.categoryid, c.categoryname;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should have an understanding of how to apply a DISTINCT aggregate
function.

Exercise 4: Writing Queries That Filter Groups with the HAVING Clause

 Task 1: Write a SELECT Statement to Retrieve the Top 10 Customers
1. In Solution Explorer, double-click 81 - Lab Exercise 4.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT TOP (10)
o.custid,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000
ORDER BY totalsalesamount DESC;

4. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-6 Querying Data with Transact-SQL

 Task 2: Write a SELECT Statement to Retrieve Specific Orders
1. In the query pane, type the following query after the Task 2 description:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20090101'
GROUP BY o.orderid, o.empid;

2. Highlight the written query, and click Execute.

 Task 3: Apply Additional Filtering
1. Highlight the previous query, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement to apply additional filtering. Your query should look like this:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20090101'
GROUP BY o.orderid, o.empid
HAVING SUM(d.qty * d.unitprice) >= 10000;

4. Highlight the written query, and click Execute.

5. Modify the T-SQL statement to include an additional filter to retrieve only orders handled by the
employee whose ID is 3. Your query should look like this:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE
o.orderdate >= '20080101' AND o.orderdate <= '20090101'
AND o.empid = 3
GROUP BY o.orderid, o.empid
HAVING SUM(d.qty * d.unitprice) >= 10000;

In this query, the predicate logic is applied in the WHERE clause. You could also write the predicate
logic inside the HAVING clause. Which do you think is better?

Unlike with orderdate filtering, with empid filtering, the result is going to be correct either way
because you are filtering by an element that appears in the GROUP BY list. Conceptually, it seems
more intuitive to filter as early as possible. This query then applies the filtering in the WHERE clause
because it will be logically applied before the GROUP BY clause. Do not forget, though, that the
actual processing in the SQL Server engine could be different.

6. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-7

 Task 4: Retrieve the Customers with More Than 25 Orders
1. In the query pane, type the following query after the Task 4 description:

SELECT
o.custid,
MAX(orderdate) AS lastorderdate,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT o.orderid) > 25;

2. Highlight the written query, and click Execute.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the HAVING clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-1

Module 10: Using Subqueries

Lab: Using Subqueries
Exercise 1: Writing Queries That Use Self-Contained Subqueries

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab10\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. At the command prompt, press any key.

 Task 2: Write a SELECT Statement to Retrieve the Last Order Date
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab10\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and click Execute.

6. In the query pane, type the following query after the Task 1 description:

SELECT MAX(orderdate) AS lastorderdate
FROM Sales.Orders;

7. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve All Orders Placed on the Last Order
Date
1. In the query pane, type the following query after the Task 2 description:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
orderdate = (SELECT MAX(orderdate) FROM Sales.Orders);

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-2 Querying Data with Transact-SQL

 Task 4: Observe the T-SQL Statement Provided by the IT Department
1. Highlight the provided T-SQL statement under the Task 3 description, and click Execute.

2. Modify the query to filter customers whose contact name starts with the letter B. Your query should
look like this:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid =
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'B%'
);

3. Highlight the written query, and click Execute.

4. Observe the error message:

Subquery returned more than 1 value. This is not permitted when the subquery follows
=, !=, <, <= , >, >= or when the subquery is used as an expression.

Why did the query fail? It failed because the subquery returned more than one row. To fix this
problem, you should replace the = operator with an IN operator.

5. Modify the query so that it uses the IN operator. Your query should look like this:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid IN
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'B%'
);

6. Highlight the written query, and click Execute.

 Task 5: Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of
the Total Sales Amount
1. In the query pane, type the following query after the Task 4 description:

SELECT
o.orderid,
SUM(d.qty * d.unitprice) AS totalsalesamount,
SUM(d.qty * d.unitprice) /
(
SELECT SUM(d.qty * d.unitprice)
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080501' AND orderdate < '20080601'
) * 100. AS salespctoftotal
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080501' AND orderdate < '20080601'
GROUP BY o.orderid;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-3

Results: After this exercise, you should be able to use self-contained subqueries in T-SQL statements.

Exercise 2: Writing Queries That Use Scalar and Multiresult Subqueries

 Task 1: Write a SELECT Statement to Retrieve Specific Products
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
productid, productname
FROM Production.Products
WHERE
productid IN
(
SELECT productid
FROM Sales.OrderDetails
WHERE qty > 100
);

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement to Retrieve Those Customers Without Orders
1. In the query pane, type the following query after the Task 2 description:

SELECT
custid, contactname
FROM Sales.Customers
WHERE custid NOT IN
(
SELECT custid
FROM Sales.Orders
);

2. Highlight the written query, and click Execute.

3. Observe the result. Notice there are two customers without an order.

 Task 3: Add a Row and Rerun the Query That Retrieves Those Customers Without
Orders
1. Highlight the provided T-SQL statement under the Task 3 description, and click Execute. This code

inserts an additional row that has a NULL in the custid column of the Sales.Orders table.

2. Highlight the query in Task 2, and on the Edit menu, click Copy.

3. In the query window, under the Task 3 description, click the line after the provided T-SQL statement,
and on the Edit menu, click Paste.

4. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-4 Querying Data with Transact-SQL

5. Notice that you have an empty result despite having two rows when you first ran the query in task 2.
Why did you have an empty result this time? There is an issue with the NULL in the new row you
added because the custid column is the only one that is part of the subquery. The IN operator
supports three-valued logic (TRUE, FALSE, UNKNOWN). Before you apply the NOT operator, the
logical meaning of UNKNOWN is that you can’t tell for sure whether the customer ID appears in the
set, because the NULL could represent that customer ID as well as anything else. As a more tangible
example, consider the expression 22 NOT IN (1, 2, NULL). If you evaluate each individual expression in
the parentheses to its truth value, you will get NOT (FALSE OR FALSE OR UNKNOWN), which
translates to NOT UNKNOWN, which evaluates to UNKNOWN. The tricky part is that negating
UNKNOWN with the NOT operator still yields UNKNOWN; and UNKNOWN is filtered out in a query
filter. In short, when you use the NOT IN predicate against a subquery that returns at least one NULL,
the outer query always returns an empty set.

6. To solve this problem, modify the T-SQL statement so that the subquery does not return NULLs. Your
query should look like this:

SELECT
custid, contactname
FROM Sales.Customers
WHERE custid NOT IN
(
SELECT custid
FROM Sales.Orders
WHERE custid IS NOT NULL
);

7. Highlight the modified query, and click Execute.

Results: After this exercise, you should know how to use multiresult subqueries in T-SQL statements.

Exercise 3: Writing Queries That Use Correlated Subqueries and an EXISTS
Predicate

 Task 1: Write a SELECT Statement to Retrieve the Last Order Date for Each Customer
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
c.custid, c.contactname,
(
SELECT MAX(o.orderdate)
FROM Sales.Orders AS o
WHERE o.custid = c.custid
) AS lastorderdate
FROM Sales.Customers AS c;

4. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-5

 Task 2: Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those
Customers Without Orders
1. In the query pane, type the following query after the Task 2 description:

SELECT c.custid, c.contactname
FROM Sales.Customers AS c
WHERE
NOT EXISTS (SELECT * FROM Sales.Orders AS o WHERE o.custid = c.custid);

2. Highlight the written query, and click Execute.

3. Notice that you achieved the same result as the modified query in exercise 2, task 3, but without a
filter to exclude NULLs. Why didn’t you need to explicitly filter out NULLs? The EXISTS predicate uses
two-valued logic (TRUE, FALSE) and checks only if the rows specified in the correlated subquery exist.
Another benefit of using the EXISTS predicate is better performance. The SQL Server engine knows it
is enough to determine whether the subquery returns at least one row or none, so it doesn’t need to
process all qualifying rows.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Bought Expensive
Products
1. In the query pane, type the following query after the Task 3 description:

SELECT c.custid, c.contactname
FROM Sales.Customers AS c
WHERE
EXISTS (
SELECT *
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.custid = c.custid
AND d.unitprice > 100.
AND o.orderdate >= '20080401'
);

2. Highlight the written query, and click Execute.

 Task 4: Write a SELECT Statement to Display the Total Sales Amount and the Running
Total Sales Amount for Each Order Year
1. In the query pane, type the following query after the Task 4 description:

SELECT
YEAR(o.orderdate) as orderyear,
SUM(d.qty * d.unitprice) AS totalsales,
(
SELECT SUM(d2.qty * d2.unitprice)
FROM Sales.Orders AS o2
INNER JOIN Sales.OrderDetails AS d2 ON d2.orderid = o2.orderid
WHERE YEAR(o2.orderdate) <= YEAR(o.orderdate)
) AS runsales
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY YEAR(o.orderdate)
ORDER BY orderyear;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-6 Querying Data with Transact-SQL

 Task 5: Clean the Sales.Customers Table
 Under the Task 5 description, highlight the provided T-SQL statement, and then click Execute.

Results: After this exercise, you should have an understanding of how to use a correlated subquery in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-1

Module 11: Using Table Expressions

Lab: Using Table Expressions
Exercise 1: Writing Queries That Use Views

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab11\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a SELECT Statement to Retrieve All Products for a Specific Category
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab11\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and then click Execute.

6. In the query pane, type the following query after the Task 1 description:

SELECT
productid, productname, supplierid, unitprice, discontinued
FROM Production.Products
WHERE categoryid = 1;

7. Highlight the written query, and click Execute.

8. Modify the query to include the provided CREATE VIEW statement. The query should look like this:

CREATE VIEW Production.ProductsBeverages AS
SELECT
productid, productname, supplierid, unitprice, discontinued
FROM Production.Products
WHERE categoryid = 1;

9. Highlight the modified query, and click Execute.

 Task 3: Write a SELECT Statement Against the Created View
1. In the query pane, type the following query after the Task 2 description:

SELECT
productid, productname
FROM Production.ProductsBeverages
WHERE supplierid = 1;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-2 Querying Data with Transact-SQL

 Task 4: Try to Use an ORDER BY Clause in the Created View
1. Highlight the provided T-SQL statement under the Task 3 description, and then click Execute.

2. Observe the error message:

The ORDER BY clause is invalid in views, inline functions, derived tables,
subqueries, and common table expressions, unless TOP, OFFSET or FOR XML is also
specified.

Why did the query fail? It failed because the view is supposed to represent a relation, and a relation
has no order. You can only use the ORDER BY clause in the view if you specify the TOP, OFFSET, or
FOR XML option. The reason you can use ORDER BY in special cases is that it serves a meaning other
than presentation ordering to these special cases.

3. Modify the previous T-SQL statement by including the TOP (100) PERCENT option. The query should
look like this:

ALTER VIEW Production.ProductsBeverages AS
SELECT TOP(100) PERCENT
productid, productname, supplierid, unitprice, discontinued
FROM Production.Products
WHERE categoryid = 1
ORDER BY productname;

4. Highlight the written query, and click Execute.

5. Observe the result. If you now write a query against the Production.ProductsBeverages view, is it
guaranteed that the retrieved rows will be sorted by productname? If you do not specify the ORDER
BY clause in the T-SQL statement against the view, there is no guarantee that the retrieved rows will
be sorted. It is important to remember that any order of the rows in the output is considered valid,
and no specific order is guaranteed. Therefore, when querying a table expression, you should not
assume any order unless you specify an ORDER BY clause in the outer query.

 Task 5: Add a Calculated Column to the View
1. Highlight the provided T-SQL statement under the Task 4 description, and then click Execute.

2. Observe the error message:

Create View or Function failed because no column name was specified for column 6.

Why did the query fail? It failed because each column must have a unique name. In the provided T-
SQL statement, the last column does not have a name.

3. Modify the T-SQL statement to include the column name pricetype. The query should look like this:

ALTER VIEW Production.ProductsBeverages AS
SELECT
 productid, productname, supplierid, unitprice, discontinued,
 CASE WHEN unitprice > 100. THEN N'high' ELSE N'normal' END AS pricetype
FROM Production.Products
WHERE categoryid = 1;

4. Highlight the written query, and click Execute.

 Task 6: Remove the Production.ProductsBeverages View
 Highlight the provided T-SQL statement under the Task 5 description and click Execute.

Results: After this exercise, you should know how to use a view in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-3

Exercise 2: Writing Queries That Use Derived Tables

 Task 1: Write a SELECT Statement Against a Derived Table
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
p.productid, p.productname
FROM
(
SELECT
productid, productname, supplierid, unitprice, discontinued,
CASE WHEN unitprice > 100. THEN N'high' ELSE N'normal' END AS pricetype
FROM Production.Products
WHERE categoryid = 1
) AS p
WHERE p.pricetype = N'high';

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement to Calculate the Total and Average Sales Amount
1. In the query pane, type the following query after the Task 2 description:

SELECT
c.custid,
SUM(c.totalsalesamountperorder) AS totalsalesamount,
AVG(c.totalsalesamountperorder) AS avgsalesamount
FROM
(
SELECT
o.custid, o.orderid, SUM(d.unitprice * d.qty) AS totalsalesamountperorder
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails d ON d.orderid = o.orderid
GROUP BY o.custid, o.orderid
) AS c
GROUP BY c.custid;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-4 Querying Data with Transact-SQL

 Task 3: Write a SELECT Statement to Retrieve the Sales Growth Percentage
1. In the query pane, type the following query after the Task 3 description:

SELECT
cy.orderyear,
cy.totalsalesamount AS curtotalsales,
py.totalsalesamount AS prevtotalsales,
(cy.totalsalesamount - py.totalsalesamount) / py.totalsalesamount * 100. AS
percentgrowth
FROM
(
SELECT
YEAR(orderdate) AS orderyear, SUM(val) AS totalsalesamount
FROM Sales.OrderValues
GROUP BY YEAR(orderdate)
) AS cy
LEFT OUTER JOIN
(
SELECT
YEAR(orderdate) AS orderyear, SUM(val) AS totalsalesamount
FROM Sales.OrderValues
GROUP BY YEAR(orderdate)
) AS py ON cy.orderyear = py.orderyear + 1
ORDER BY cy.orderyear;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should be able to use derived tables in T-SQL statements.

Exercise 3: Writing Queries That Use CTEs

 Task 1: Write a SELECT Statement That Uses a CTE
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

WITH ProductsBeverages AS
(
SELECT
productid, productname, supplierid, unitprice, discontinued,
CASE WHEN unitprice > 100. THEN N'high' ELSE N'normal' END AS pricetype
FROM Production.Products
WHERE categoryid = 1
)
SELECT
productid, productname
FROM ProductsBeverages
WHERE pricetype = N'high';

4. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-5

 Task 2: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer
1. In the query pane, type the following query after the Task 2 description:

WITH c2008 (custid, salesamt2008) AS
(
SELECT
custid, SUM(val)
FROM Sales.OrderValues
WHERE YEAR(orderdate) = 2008
GROUP BY custid
)
SELECT
c.custid, c.contactname, c2008.salesamt2008
FROM Sales.Customers AS c
LEFT OUTER JOIN c2008 ON c.custid = c2008.custid;

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Compare the Total Sales Amount for Each
Customer Over the Previous Year
1. In the query pane, type the following query after the Task 3 description:

WITH c2008 (custid, salesamt2008) AS
(
SELECT
custid, SUM(val)
FROM Sales.OrderValues
WHERE YEAR(orderdate) = 2008
GROUP BY custid
),
c2007 (custid, salesamt2007) AS
(
SELECT
custid, SUM(val)
FROM Sales.OrderValues
WHERE YEAR(orderdate) = 2007
GROUP BY custid
)
SELECT
c.custid, c.contactname,
c2008.salesamt2008,
c2007.salesamt2007,
COALESCE((c2008.salesamt2008 - c2007.salesamt2007) / c2007.salesamt2007 * 100., 0) AS
percentgrowth
FROM Sales.Customers AS c
LEFT OUTER JOIN c2008 ON c.custid = c2008.custid
LEFT OUTER JOIN c2007 ON c.custid = c2007.custid
ORDER BY percentgrowth DESC;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should have an understanding of how to use a CTE in a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-6 Querying Data with Transact-SQL

Exercise 4: Writing Queries That Use Inline TVFs

 Task 1: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer
1. In Solution Explorer, double-click 81 - Lab Exercise 4.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
custid, SUM(val) AS totalsalesamount
FROM Sales.OrderValues
WHERE YEAR(orderdate) = 2007
GROUP BY custid;

4. Highlight the written query, and click Execute.

5. Create an inline TVF using the provided code. Add the previous query, putting it after the function’s
RETURN clause. In the query, replace the order date of 2007 with the function’s input parameter
@orderyear. The resulting T-SQL statement should look like this:

CREATE FUNCTION dbo.fnGetSalesByCustomer
(@orderyear AS INT) RETURNS TABLE
AS
RETURN
SELECT
custid, SUM(val) AS totalsalesamount
FROM Sales.OrderValues
WHERE YEAR(orderdate) = @orderyear
GROUP BY custid;

This T-SQL statement will create an inline TVF named dbo.fnGetSalesByCustomer.

6. Highlight the written T-SQL statement, and click Execute.

 Task 2: Write a SELECT Statement Against the Inline TVF
1. In the query pane, type the following query after the Task 2 description:

SELECT
custid, totalsalesamount
FROM dbo.fnGetSalesByCustomer(2007);

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve the Top Three Products Based on the
Total Sales Value for a Specific Customer
1. In the query pane, type the following query after the Task 3 description:

SELECT TOP(3)
d.productid,
MAX(p.productname) AS productname,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
WHERE custid = 1
GROUP BY d.productid
ORDER BY totalsalesamount DESC;

2. Highlight the written query, and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-7

3. Create an inline TVF using the provided code. Add the previous query, putting it after the function’s
RETURN clause. In the query, replace the constant custid value of 1 with the function’s input
parameter @custid. The resulting T-SQL statement should look like this:

CREATE FUNCTION dbo.fnGetTop3ProductsForCustomer
(@custid AS INT) RETURNS TABLE
AS
RETURN
SELECT TOP(3)
d.productid,
MAX(p.productname) AS productname,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
WHERE custid = @custid
GROUP BY d.productid
ORDER BY totalsalesamount DESC;

4. To test the inline TVF, add the following query after the CREATE FUNCTION and GO statement:

SELECT
p.productid,
p.productname,
p.totalsalesamount
FROM dbo.fnGetTop3ProductsForCustomer(1) AS p;

5. Highlight the CREATE FUNCTION statement and the written query, and click Execute.

 Task 4: Using Inline TVFs, Write a SELECT Statement to Compare the Total Sales
Amount for Each Customer Over the Previous Year
1. In the query pane, type the following query after the Task 4 description:

SELECT
c.custid, c.contactname,
c2008.totalsalesamount AS salesamt2008,
c2007.totalsalesamount AS salesamt2007,
COALESCE((c2008.totalsalesamount - c2007.totalsalesamount) / c2007.totalsalesamount *
100., 0) AS percentgrowth
FROM Sales.Customers AS c
LEFT OUTER JOIN dbo.fnGetSalesByCustomer(2007) AS c2007 ON c.custid = c2007.custid
LEFT OUTER JOIN dbo.fnGetSalesByCustomer(2008) AS c2008 ON c.custid = c2008.custid;

2. Highlight the written query, and click Execute.

 Task 5: Remove the Created Inline TVFs
 Highlight the provided T-SQL statement under the Task 5 description and click Execute.

Results: After this exercise, you should know how to use inline TVFs in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-1

Module 12: Using Set Operators

Lab: Using Set Operators
Exercise 1: Writing Queries That Use UNION Set Operators and UNION ALL
Multi-Set Operators

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab12\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, wait for the script to finish, and then press any
key.

 Task 2: Write a SELECT Statement to Retrieve Specific Products
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using

Windows® authentication.

2. On the File menu, point to Open, and then click Project/Solution.

3. In the Open Project dialog box, navigate to the D:\Labfiles\Lab12\Starter\Project folder, and then
double-click Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query pane, highlight the statement USE TSQL;, and then click Execute.

6. In the query pane, after the Task 1 description, type the following query:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4;

7. Highlight the written query, and click Execute. Observe that the query retrieved 10 rows.

 Task 3: Write a SELECT Statement to Retrieve All Products with a Total Sales Amount
of More Than $50,000
1. In the query pane, after the Task 2 description, type the following query:

SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

2. Highlight the written query, and click Execute. Observe that the query retrieved four rows.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-2 Querying Data with Transact-SQL

 Task 4: Merge the Results from Task 1 and Task 2
1. In the query pane, after the Task 3 description, type the following query:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4
UNION
SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

2. Highlight the written query, and click Execute.

3. Observe the result. What is the total number of rows in the result? If you compare this number with
an aggregate value of the number of rows from tasks 1 and 2, is there any difference? The total
number of rows retrieved by the query is 12. This is two rows less than the aggregate value of rows
from the query in task 1 (10 rows) and task 2 (four rows).

4. Highlight the previous query, and on the Edit menu, click Copy.

5. In the query window, click the line after the written T-SQL statement, and on the Edit menu, click
Paste.

6. Modify the T-SQL statement by replacing the UNION operator with the UNION ALL operator. The
query should look like this:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4
UNION ALL
SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

7. Highlight the modified query, and click Execute.

8. Observe the result. What is the total number of rows in the result? What is the difference between the
UNION and UNION ALL operators? The total number of rows retrieved by the query is 14. It is the
same as the aggregate value of rows from the queries in tasks 1 and 2. This is because UNION ALL is a
multi-set operator that returns all rows that appear in any of the inputs, without really comparing
rows and without eliminating duplicates. The UNION set operator removes the duplicate rows and
the result consists of only distinct rows.

9. So, when should you use either UNION ALL or UNION when unifying two inputs? If a potential exists
for duplicates and you need to return them, use UNION ALL. If a potential exists for duplicates but
you need to return distinct rows, use UNION. If no potential exists for duplicates when unifying the
two inputs, UNION and UNION ALL are logically equivalent. However, in such a case, using UNION
ALL is recommended because it removes the overhead of SQL Server checking for duplicates.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-3

 Task 5: Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount
for January 2008 and February 2008
1. In the query pane, after the Task 4 description, type the following query:

SELECT
c1.custid, c1.contactname
FROM
(
SELECT TOP (10)
o.custid, c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20080201'
GROUP BY o.custid, c.contactname
ORDER BY SUM(o.val) DESC
) AS c1
UNION
SELECT c2.custid, c2.contactname
FROM
(
SELECT TOP (10)
o.custid, c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.orderdate >= '20080201' AND o.orderdate < '20080301'
GROUP BY o.custid, c.contactname
ORDER BY SUM(o.val) DESC
) AS c2;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should know how to use the UNION and UNION ALL set operators in T-
SQL statements.

Exercise 2: Writing Queries That Use the CROSS APPLY and OUTER APPLY
Operators

 Task 1: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Last Two Orders for Each Product
1. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
p.productid, p.productname, o.orderid
FROM Production.Products AS p
CROSS APPLY
(
SELECT TOP(2)
d.orderid
FROM Sales.OrderDetails AS d
WHERE d.productid = p.productid
ORDER BY d.orderid DESC
) o
ORDER BY p.productid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-4 Querying Data with Transact-SQL

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Top Three Products, Based on Sales Revenue, for Each Customer
1. Highlight the provided T-SQL code after the Task 2 description, and click Execute.

2. In the query pane, type the following query after the provided T-SQL code:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
CROSS APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
ORDER BY c.custid;

Tip: you can make the inline TVF (dbo.fnGetTop3ProductsForCustomer) more flexible by making the
number of top rows to return an argument instead of fixing the number to three in the function’s
code.

3. Highlight the written query, and click Execute. Note that the query retrieves 265 rows.

 Task 3: Use the OUTER APPLY Operator
1. Highlight the previous query in Task 2, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement by replacing the CROSS APPLY operator with the OUTER APPLY
operator. The query should look like this:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
OUTER APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
ORDER BY c.custid;

4. Highlight the modified query, and click Execute.

5. Notice that the query retrieved 267 rows, which is two more rows than the previous query. Observe
the result to see two rows with NULL in the columns from the inline TVF.

 Task 4: Analyze the OUTER APPLY Operator
1. Highlight the previous query in Task 3, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 4 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement to search for a null productid. The query should look like this:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
OUTER APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
WHERE p.productid IS NULL;

4. Highlight the modified query, and click Execute.

5. Notice that the query now retrieves the two rows that do not occur in the CROSS APPLY query in Task
2.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-5

 Task 5: Remove the TVF Created for This Lab
 Highlight the provided T-SQL statement after the Task 5 description, and click Execute.

Results: After this exercise, you should be able to use the CROSS APPLY and OUTER APPLY operators in
your T-SQL statements.

Exercise 3: Writing Queries That Use the EXCEPT and INTERSECT Operators

 Task 1: Write a SELECT Statement to Return All Customers Who Bought More Than
20 Distinct Products
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. In the query pane, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20;

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement to Retrieve All Customers from the USA, Except
Those Who Bought More Than 20 Distinct Products
1. In the query pane, after the Task 2 description, type the following query:

SELECT
custid
FROM Sales.Customers
WHERE country = 'USA'
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20;

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Spent More Than
$10,000
1. In the query pane, after the Task 3 description, type the following query:

SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-6 Querying Data with Transact-SQL

2. Highlight the written query, and click Execute.

 Task 4: Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators
1. Highlight the query from Task 2, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 4 description, and on the Edit menu, click Paste.

3. Modify the first SELECT statement so that it selects all customers—not just those from the USA—and
include the INTERSECT operator, adding the query from Task 3. The query should look like this:

SELECT
c.custid
FROM Sales.Customers AS c
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20
INTERSECT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

4. Highlight the modified query, and click Execute.

5. Observe that the total number of rows is 59. In business terms, can you explain which customers are
part of the result? Because the INTERSECT operator is evaluated before the EXCEPT operator, the
result consists of all customers, except those who bought more than 20 different products and spent
more than $10,000.

 Task 5: Change the Operator Precedence
1. Highlight the previous query in Task 4, and on the Edit menu, click Copy.

2. In the query window, click the line after the Task 5 description, and on the Edit menu, click Paste.

3. Modify the T-SQL statement by adding a set of parentheses around the first two SELECT statements.
The query should look like this:

(
SELECT
c.custid
FROM Sales.Customers AS c
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20
)
INTERSECT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-7

4. Highlight the provided T-SQL statement, and click Execute.

5. Observe that the total number of rows is nine. Is that different to the result of the query in task 4?
Yes, because when you added the parentheses, the SQL Server engine first evaluated the EXCEPT
operation, and then the INTERSECT operation. In business terms, this query retrieved all customers
who did not buy more than 20 distinct products, and who spent more than $10,000.

6. What is the precedence among the set operators? SQL defines the following precedence among the
set operations: INTERSECT precedes UNION and EXCEPT, while UNION and EXCEPT are considered
equal. In a query that contains multiple set operations, INTERSECT operations are evaluated first, and
then operations with the same precedence are evaluated, based on appearance order. Remember
that set operations in parentheses are always processed first.

7. Close SQL Server Management Studio, without saving any changes.

Results: After this exercise, you should have an understanding of how to use the EXCEPT and INTERSECT
operators in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-1

Module 13: Using Window Ranking, Offset, and Aggregate
Functions

Lab: Using Window Ranking, Offset, and
Aggregate Functions
Exercise 1: Writing Queries That Use Ranking Functions

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab13\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a SELECT Statement That Uses the ROW_NUMBER Function to Create a
Calculated Column
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab13\Starter\Project\Project.ssmssln.

4. In Solution Explorer, double-click the query 51 - Lab Exercise 1.sql.

5. When the query window opens, highlight the statement USE TSQL; and click Execute.

6. In the query pane, type the following query after the Task 1 description:

SELECT
orderid,
orderdate,
val,
ROW_NUMBER() OVER (ORDER BY orderdate) AS rowno
FROM Sales.OrderValues;

7. Highlight the written query and click Execute.

 Task 3: Add an Additional Column Using the RANK Function
1. Highlight the previous query. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the Task 2 description. On the toolbar, click Edit and then
Paste.

3. Modify the T-SQL statement by adding an additional calculated column. The query should look like
this:

SELECT
orderid,
orderdate,
val,
ROW_NUMBER() OVER (ORDER BY orderdate) AS rowno,
RANK() OVER (ORDER BY orderdate) AS rankno
FROM Sales.OrderValues;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-2 Querying Data with Transact-SQL

5. Observe the results. What is the difference between the RANK and ROW_NUMBER functions? The
ROW_NUMBER function provides unique sequential integer values within the partition. The RANK
function assigns the same ranking value to rows with the same values in the specified sort columns
when the ORDER BY list is not unique. Also, the RANK function skips the next number if there is a tie
in the ranking value.

 Task 4: Write A SELECT Statement to Calculate a Rank, Partitioned by Customer and
Ordered by the Order Value
1. In the query pane, type the following query after the Task 3 description:

SELECT
orderid,
orderdate,
custid,
val,
RANK() OVER (PARTITION BY custid ORDER BY val DESC) AS orderrankno FROM
Sales.OrderValues;

2. Highlight the written query and click Execute.

 Task 5: Write a SELECT Statement to Rank Orders, Partitioned by Customer and
Order Year, and Ordered by the Order Value
1. In the query pane, type the following query after the Task 4 description:

SELECT
custid,
val,
YEAR(orderdate) as orderyear,
RANK() OVER (PARTITION BY custid, YEAR(orderdate) ORDER BY val DESC) AS orderrankno
FROM Sales.OrderValues;

2. Highlight the written query and click Execute.

 Task 6: Filter Only Orders with the Top Two Ranks
1. Highlight the previous query. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the Task 5 description. On the toolbar, click Edit and then
Paste.

3. Modify the T-SQL statement to look like this:

SELECT
s.custid,
s.orderyear,
s.orderrankno,
s.val
FROM
(
SELECT
custid,
val,
YEAR(orderdate) as orderyear,
RANK() OVER (PARTITION BY custid, YEAR(orderdate) ORDER BY val DESC) AS orderrankno
FROM Sales.OrderValues
) AS s
WHERE s.orderrankno <= 2;

4. Highlight the written query and click Execute.

Results: After this exercise, you should know how to use ranking functions in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-3

Exercise 2: Writing Queries That Use Offset Functions

 Task 1: Write a SELECT Statement to Retrieve the Next Row Using a Common Table
Expression (CTE)
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the Task 1 description:

WITH OrderRows AS
(
SELECT
orderid,
orderdate,
ROW_NUMBER() OVER (ORDER BY orderdate, orderid) AS rowno,
val
FROM Sales.OrderValues
)
SELECT
o.orderid,
o.orderdate,
o.val,
o2.val as prevval,
o.val - o2.val as diffprev
FROM OrderRows AS o
LEFT OUTER JOIN OrderRows AS o2 ON o.rowno = o2.rowno + 1;

4. Highlight the written query and click Execute.

 Task 2: Add a Column to Display the Running Sales Total
1. In the query pane, type the following query after the Task 2 description:

SELECT
orderid,
orderdate,
val,
LAG(val) OVER (ORDER BY orderdate, orderid) AS prevval,
val - LAG(val) OVER (ORDER BY orderdate, orderid) AS diffprev
FROM Sales.OrderValues;

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-4 Querying Data with Transact-SQL

 Task 3: Analyze the Sales Information for the Year 2007
1. In the query pane, type the following query after the Task 3 description:

WITH SalesMonth2007 AS
(
SELECT
MONTH(orderdate) AS monthno,
SUM(val) AS val
FROM Sales.OrderValues
WHERE orderdate >= '20070101' AND orderdate < '20080101'
GROUP BY MONTH(orderdate)
)
SELECT
monthno,
val,
(LAG(val, 1, 0) OVER (ORDER BY monthno) + LAG(val, 2, 0) OVER (ORDER BY monthno) +
LAG(val, 3, 0) OVER (ORDER BY monthno)) / 3 AS avglast3months,
val - FIRST_VALUE(val) OVER (ORDER BY monthno ROWS UNBOUNDED PRECEDING) AS
diffjanuary,
LEAD(val) OVER (ORDER BY monthno) AS nextval
FROM SalesMonth2007;

2. Highlight the written query and click Execute.

Results: After this exercise, you should be able to use the offset functions in your T-SQL statements.

Exercise 3: Writing Queries That Use Window Aggregate Functions

 Task 1: Write a SELECT Statement to Display the Contribution of Each Customer’s
Order Compared to That Customer’s Total Purchase
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
custid,
orderid,
orderdate,
val,
100. * val / SUM(val) OVER (PARTITION BY custid) AS percoftotalcust
FROM Sales.OrderValues
ORDER BY custid, percoftotalcust DESC;

4. Highlight the written query and click Execute.

 Task 2: Add a Column to Display the Running Sales Total
1. Highlight the previous query. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the Task 2 description. On the toolbar, click Edit and then
Paste.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-5

3. Modify the T-SQL statement by adding an additional calculated column. The query should look like
this:

SELECT
custid,
orderid,
orderdate,
val,
100. * val / SUM(val) OVER (PARTITION BY custid) AS percoftotalcust,
SUM(val) OVER (PARTITION BY custid
ORDER BY orderdate, orderid
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) AS runval
FROM Sales.OrderValues;

4. Highlight the written query and click Execute.

 Task 3: Analyze the Year-to-Date Sales Amount and Average Sales Amount for the
Last Three Months
1. In the query pane, type the following query after the Task 3 description:

WITH SalesMonth2007 AS
(
SELECT
MONTH(orderdate) AS monthno,
SUM(val) AS val
FROM Sales.OrderValues
WHERE orderdate >= '20070101' AND orderdate < '20080101'
GROUP BY MONTH(orderdate)
)
SELECT
monthno,
val,
AVG(val) OVER (ORDER BY monthno ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS
avglast3months,
SUM(val) OVER (ORDER BY monthno ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS
ytdval
FROM SalesMonth2007;

2. Highlight the written query and click Execute.

3. Close SQL Server Management Studio without saving any changes.

Results: After this exercise, you should have a basic understanding of how to use window aggregate
functions in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-1

Module 14: Pivoting and Grouping Sets

Lab: Pivoting and Grouping Sets
Exercise 1: Writing Queries That Use the PIVOT Operator

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab14\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a SELECT Statement to Retrieve the Number of Customers for a Specific
Customer Group
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab14\Starter\Project\Project.ssmssln.

4. In Solution Explorer, double-click the query 51 - Lab Exercise 1.sql.

5. In the query window, highlight the statement USE TSQL; and click Execute.

6. Highlight the following provided T-SQL code:

CREATE VIEW Sales.CustGroups AS
SELECT
custid,
CHOOSE(custid % 3 + 1, N'A', N'B', N'C') AS custgroup,
Country
FROM Sales.Customers;

7. Click Execute. This code creates a view named Sales.CustGroups.

8. In the query pane, type the following query after the provided T-SQL code:

SELECT
custid,
custgroup,
country
FROM Sales.CustGroups;

9. Highlight the written query and click Execute.

10. Modify the written T-SQL code by applying the PIVOT operator. The query should look like this:

SELECT
country,
p.A,
p.B,
p.C
FROM Sales.CustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

11. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-2

 Task 3: Specify the Grouping Element for the PIVOT Operator
1. Highlight the following provided T-SQL code after the Task 2 description:

ALTER VIEW Sales.CustGroups AS
SELECT
custid,
CHOOSE(custid % 3 + 1, N'A', N'B', N'C') AS custgroup,
country,
city,
contactname
FROM Sales.Customers;

2. Click Execute. This code modifies the view by adding two additional columns.

3. Highlight the last query in task 1. On the toolbar, click Edit and then Copy.

4. In the query window, click the line after the provided T-SQL code. On the toolbar, click Edit and then
Paste. The query should look like this:

SELECT
country,
p.A,
p.B,
p.C
FROM Sales.CustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

5. Highlight the copied query and click Execute.

6. Observe the result. Is this result the same as that from the query in task 1? The result is not the same.
More rows were returned after you modified the view.

7. Modify the copied T-SQL statement to include additional columns from the view. The query should
look like this:

SELECT
country,
city,
contactname,
p.A,
p.B,
p.C
FROM Sales.CustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

8. Highlight the written query and click Execute.

Notice that you received the same result as the previous query. Why did you get the same number of
rows? The PIVOT operator assumes that all the columns except the aggregation and spreading
elements are part of the grouping columns.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-3

 Task 4: Use a Common Table Expression (CTE) to Specify the Grouping Element for
the PIVOT Operator
1. In the query pane, type the following query after the Task 3 description:

WITH PivotCustGroups AS
(
SELECT
custid,
country,
custgroup
FROM Sales.CustGroups
)
SELECT
country,
p.A,
p.B,
p.C
FROM PivotCustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

2. Highlight the written query and click Execute.

3. Observe the result. Is it the same as the result of the last query in task 1? Can you explain why? The
result is the same. In this task, the CTE has provided three possible columns to the PIVOT operator. In
task 1, the view also provided three columns to the PIVOT operator.

4. Why do you think it is beneficial to use a CTE when using the PIVOT operator? When using the PIVOT
operator, you cannot directly specify the grouping element because SQL Server automatically
assumes that all columns should be used as grouping elements, with the exception of the spreading
and aggregation elements. With a CTE, you can specify the exact columns and therefore control that
columns use for the grouping.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-4

 Task 5: Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer and Product Category
1. In the query pane, type the following query after the Task 4 description:

WITH SalesByCategory AS
(
SELECT
o.custid,
d.qty * d.unitprice AS salesvalue,
c.categoryname
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON o.orderid = d.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
INNER JOIN Production.Categories AS c ON c.categoryid = p.categoryid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20090101'
)
SELECT
custid,
p.Beverages,
p.Condiments,
p.Confections,
p.[Dairy Products],
p.[Grains/Cereals],
p.[Meat/Poultry],
p.Produce,
p.Seafood
FROM SalesByCategory
PIVOT (SUM(salesvalue) FOR categoryname
IN (Beverages, Condiments, Confections, [Dairy Products], [Grains/Cereals],
[Meat/Poultry], Produce, Seafood)) AS p;

2. Highlight the written query and click Execute.

Results: After this exercise, you should be able to use the PIVOT operator in T-SQL statements.

Exercise 2: Writing Queries That Use the UNPIVOT Operator

 Task 1: Create and Query the Sales.PivotCustGroups View
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. Highlight the following provided T-SQL code:

CREATE VIEW Sales.PivotCustGroups AS
WITH PivotCustGroups AS
(
SELECT
custid,
country,
custgroup
FROM Sales.CustGroups
)
SELECT
country,
p.A,
p.B,
p.C
FROM PivotCustGroups
PIVOT (COUNT(custid) FOR custgroup IN (A, B, C)) AS p;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-5

4. Click Execute. This code creates a view named Sales.PivotCustGroups.

5. In the query pane, type the following query after the provided T-SQL code:

SELECT
country, A, B, C
FROM Sales.PivotCustGroups;

6. Highlight the written query and click Execute.

 Task 2: Write a SELECT Statement to Retrieve a Row for Each Country and Customer
Group
1. In the query pane, type the following query after the Task 2 descriptions:

SELECT
custgroup,
country,
numberofcustomers
FROM Sales.PivotCustGroups
UNPIVOT (numberofcustomers FOR custgroup IN (A, B, C)) AS p;

2. Highlight the written query and click Execute.

 Task 3: Remove the Created Views
 Highlight the provided T-SQL statement after the Task 3 description and click Execute.

Results: After this exercise, you should know how to use the UNPIVOT operator in your T-SQL statements.

Exercise 3: Writing Queries That Use the GROUPING SETS, CUBE, and
ROLLUP Subclauses

 Task 1: Write a SELECT Statement That Uses the GROUPING SETS Subclause to Return
the Number of Customers for Different Grouping Sets
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the Task 1 description:

SELECT
country,
city,
COUNT(custid) AS noofcustomers
FROM Sales.Customers
GROUP BY
GROUPING SETS
(
(country, city),
(country),
(city),
()
);

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-6

 Task 2: Write a SELECT Statement That Uses the CUBE Subclause to Retrieve
Grouping Sets Based on Yearly, Monthly, and Daily Sales Values
1. In the query pane, type the following query after the Task 2 description:

SELECT
YEAR(orderdate) AS orderyear,
MONTH(orderdate) AS ordermonth,
DAY(orderdate) AS orderday,
SUM(val) AS salesvalue
FROM Sales.OrderValues
GROUP BY
CUBE (YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

2. Highlight the written query and click Execute.

 Task 3: Write the Same SELECT Statement Using the ROLLUP Subclause
1. In the query pane, type the following query after the Task 3 description:

SELECT
YEAR(orderdate) AS orderyear,
MONTH(orderdate) AS ordermonth,
DAY(orderdate) AS orderday,
SUM(val) AS salesvalue
FROM Sales.OrderValues
GROUP BY
ROLLUP (YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

2. Highlight the written query and click Execute.

3. Observe the result. What is the difference between the ROLLUP and CUBE subclauses of the GROUP
BY clause? Like the CUBE subclause, the ROLLUP subclause provides an abbreviated way to define
multiple grouping sets. However, unlike CUBE, ROLLUP doesn’t produce all possible grouping sets
that can be defined based on the input members—it produces a subset of those. ROLLUP assumes a
hierarchy among the input members and produces all grouping sets that make sense, considering the
hierarchy. In other words, while CUBE(a, b, c) produces all eight possible grouping sets out of the
three input members, ROLLUP(a, b, c) produces only four grouping sets, assuming the hierarchy
a>b>c. ROLLUP(a, b, c) is the equivalent of specifying GROUPING SETS((a, b, c), (a, b), (a), ()).

Which is the more appropriate subclause to use in this example? Since year, month, and day form a
hierarchy, the ROLLUP clause is more suitable. There is probably not much interest in showing
aggregates for a month irrespective of year, but the other way around is interesting.

 Task 4: Analyze the Total Sales Value by Year and Month
1. In the query pane, type the following query after the Task 4 description:

SELECT
GROUPING_ID(YEAR(orderdate), MONTH(orderdate)) as groupid,
YEAR(orderdate) AS orderyear,
MONTH(orderdate) AS ordermonth,
SUM(val) AS salesvalue
FROM Sales.OrderValues
GROUP BY
ROLLUP (YEAR(orderdate), MONTH(orderdate))
ORDER BY groupid, orderyear, ordermonth;

2. Highlight the written query and click Execute.

3. Close SQL Server Management Studio without saving any changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L14-7

Results: After this exercise, you should have an understanding of how to use the GROUPING SETS, CUBE,
and ROLLUP subclauses in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-1

Module 15: Executing Stored Procedures

Lab: Executing Stored Procedures
Exercise 1: Using the EXECUTE Statement to Invoke Stored Procedures

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab15\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Create and Execute a Stored Procedure
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab15\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql.

5. In the query window, highlight the statement USE TSQL; and click Execute on the toolbar.

6. Highlight the following T-SQL code under the Task 1 description:

CREATE PROCEDURE Sales.GetTopCustomers AS
SELECT TOP(10)
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC;

7. Click Execute. You have created a stored procedure named Sales.GetTopCustomers.

8. In the query pane, type the following T-SQL code after the previous T-SQL code:

EXECUTE Sales.GetTopCustomers;

9. Highlight the written T-SQL code and click Execute. You have executed the stored procedure.

 Task 3: Modify the Stored Procedure and Execute It
1. Highlight the following T-SQL code after the Task 2 description:

ALTER PROCEDURE Sales.GetTopCustomers AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-2 Querying Data with Transact-SQL

2. Click Execute. You have modified the Sales.GetTopCustomers stored procedure.

3. In the query pane, type the following T-SQL code after the previous T-SQL code:

EXECUTE Sales.GetTopCustomers;

4. Highlight the written T-SQL code and click Execute. You have executed the modified stored
procedure.

5. Compare both the code and the result of the two versions of the stored procedure. What is the
difference between them? In the modified version, the TOP option has been replaced with the
OFFSET-FETCH option. Despite this change, the result is the same.

If some applications had been using the stored procedure in task 1, would they still work properly
after the change you applied in task 2? Yes, since the result from the stored procedure is still the
same. This demonstrates the huge benefit of using stored procedures as an additional layer between
the database and the application/middle tier. Even if you change the underlying T-SQL code, the
application would work properly without any changes. There are also other benefits of using stored
procedures in terms of performance (for example, caching and reuse of plans) and security (for
example, preventing SQL injections).

Results: After this exercise, you should be able to invoke a stored procedure using the EXECUTE
statement.

Exercise 2: Passing Parameters to Stored Procedures

 Task 1: Execute a Stored Procedure with a Parameter for Order Year
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. Highlight the following T-SQL code under the Task 1 description:

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

4. Click Execute. You have modified the Sales.GetTopCustomers stored procedure to accept the
parameter @orderyear. Notice that the modified stored procedure uses a predicate in the WHERE
clause that isn’t a search argument. This predicate was used to keep things simple. The best practice is
to avoid such filtering because it does not allow efficient use of indexing. A better approach would be
to use the DATETIMEFROMPARTS function to provide a search argument for orderdate:

WHERE o.orderdate >= DATETIMEFROMPARTS(@orderyear, 1, 1, 0, 0, 0, 0)
AND o.orderdate < DATETIMEFROMPARTS(@orderyear + 1, 1, 1, 0, 0, 0, 0)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-3

5. In the query pane, type the following T-SQL code after the previous T-SQL code:

EXECUTE Sales.GetTopCustomers @orderyear = 2007;

Notice that you are passing the parameter by name as this is considered the best practice. There is
also support for passing parameters by position. For example, the following EXECUTE statement
would retrieve the same result as the T-SQL code you just typed:

EXECUTE Sales.GetTopCustomers 2007;

6. Highlight the written T-SQL code and click Execute.

7. After the previous T-SQL code, type the following T-SQL code to execute the stored procedure for the
order year 2008:

EXECUTE Sales.GetTopCustomers @orderyear = 2008;

8. Highlight the written T-SQL code and click Execute.

9. After the previous T-SQL code, type the following T-SQL code to execute the stored procedure
without specifying a parameter:

EXECUTE Sales.GetTopCustomers;

10. Highlight the written T-SQL code and click Execute.

11. Observe the error message:

Procedure or function 'GetTopCustomers' expects parameter '@orderyear', which was not supplied.

This error message is telling you that the @orderyear parameter was not supplied.

12. Suppose that an application named MyCustomers is using the exercise 1 version of the stored
procedure. Would the modification made to the stored procedure in this exercise impact the usability
of the GetCustomerInfo application? Yes. The exercise 1 version of the stored procedure did not need
a parameter, whereas the version in this exercise does not work without a parameter. To avoid
problems, you can add a default parameter to the stored procedure. That way, the MyCustomers
application does not have to be changed to support the @orderyear parameter.

 Task 2: Modify the Stored Procedure to Have a Default Value for the Parameter
1. Highlight the following T-SQL code under the Task 2 description:

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int = NULL
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear OR @orderyear IS NULL
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

2. Click Execute. You have modified the Sales.GetTopCustomers stored procedure to have a default
value (NULL) for the @orderyear parameter. You have also included an additional logical expression
to the WHERE clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-4 Querying Data with Transact-SQL

3. In the query pane, type the following T-SQL code after the previous one:

EXECUTE Sales.GetTopCustomers;

This code tests the modified stored procedure by executing it without specifying a parameter.

4. Highlight the written query and click Execute.

5. Observe the result. How do the changes to the stored procedure in task 2 influence the MyCustomers
application and the design of future applications? The changes enable the MyCustomers application
to use the modified stored procedure, and no changes need to be made to the application. The
changes add new possibilities for future applications because the modified stored procedure accepts
the order year as a parameter.

 Task 3: Pass Multiple Parameters to the Stored Procedure
1. Highlight the following T-SQL code under the Task 3 description:

ALTER PROCEDURE Sales.GetTopCustomers
@orderyear int = NULL,
@n int = 10
AS
SELECT
c.custid,
c.contactname,
SUM(o.val) AS salesvalue
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE YEAR(o.orderdate) = @orderyear OR @orderyear IS NULL
GROUP BY c.custid, c.contactname
ORDER BY salesvalue DESC
OFFSET 0 ROWS FETCH NEXT @n ROWS ONLY;

2. Click Execute. You have modified the Sales.GetTopCustomers stored procedure to have an additional
parameter named @n. You can use this parameter to specify how many customers to retrieve. The
default value is 10.

3. After the previous T-SQL code, type the following T-SQL code to execute the modified stored
procedure:

EXECUTE Sales.GetTopCustomers;

4. Highlight the written query and click Execute.

5. After the previous T-SQL code, type the following T-SQL code to retrieve the top five customers for
the year 2008:

EXECUTE Sales.GetTopCustomers @orderyear = 2008, @n = 5;

6. Highlight the written query and click Execute.

7. After the previous T-SQL code, type the following T-SQL code to retrieve the top 10 customers for the
year 2007:

EXECUTE Sales.GetTopCustomers @orderyear = 2007;

8. Highlight the written query and click Execute.

9. After the previous T-SQL code, type the following T-SQL code to retrieve the top 20 customers:

EXECUTE Sales.GetTopCustomers @n = 20;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-5

10. Highlight the written query and click Execute.

11. Do the applications using the stored procedure need to be changed because another parameter was
added? No changes need to be made to the application.

 Task 4: Return the Result from a Stored Procedure Using the OUTPUT Clause
1. Highlight the following T-SQL code under the Task 4 description:

ALTER PROCEDURE Sales.GetTopCustomers
@customerpos int = 1,
@customername nvarchar(30) OUTPUT
AS
SET @customername = (
SELECT
c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
GROUP BY c.custid, c.contactname
ORDER BY SUM(o.val) DESC
OFFSET @customerpos - 1 ROWS FETCH NEXT 1 ROW ONLY
);

2. Click Execute.

3. Find the following DECLARE statement in the provided code:

DECLARE @outcustomername nvarchar(30);

This statement declares a parameter named @outcustomername.

4. After the DECLARE statement, add code that uses the OUTPUT clause to return the stored procedure’s
result as a variable named @outcustomername. Your code, together with the provided DECLARE
statement, should look like this:

DECLARE @outcustomername nvarchar(30);
EXECUTE Sales.GetTopCustomers @customerpos = 1, @customername = @outcustomername
OUTPUT;
SELECT @outcustomername AS customername;

5. Highlight all three T-SQL statements and click Execute.

Results: After this exercise, you should know how to invoke stored procedures that have parameters.

Exercise 3: Executing System Stored Procedures

 Task 1: Execute the Stored Procedure sys.sp_help
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following T-SQL code after the Task 1 description:

EXEC sys.sp_help;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L15-6 Querying Data with Transact-SQL

5. In the query pane, type the following T-SQL code after the previous T-SQL code:

EXEC sys.sp_help N'Sales.Customers';

6. Highlight the written query and click Execute.

 Task 2: Execute the Stored Procedure sys.sp_helptext
1. In the query pane, type the following T-SQL code after the Task 2 description:

EXEC sys.sp_helptext N'Sales.GetTopCustomers';

2. Highlight the written query and click Execute.

 Task 3: Execute the Stored Procedure sys.sp_columns
1. In the query pane, type the following T-SQL code after the Task 3 description:

EXEC sys.sp_columns @table_name = N'Customers', @table_owner = N'Sales';

2. Highlight the written query and click Execute.

 Task 4: Drop the Created Stored Procedure
 Highlight the provided T-SQL statement under the Task 4 description and click Execute.

Results: After this exercise, you should have a basic knowledge of invoking different system-stored
procedures.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-1

Module 16: Programming with T-SQL

Lab: Programming with T-SQL
Exercise 1: Declaring Variables and Delimiting Batches

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab16\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Declare a Variable and Retrieve the Value
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab16\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and then double-click the query 51 - Lab Exercise 1.sql.

5. In the query window, highlight the statement USE TSQL; and click Execute.

6. In the query pane, type the following T-SQL code after the Task 1 description:

DECLARE @num int = 5;
SELECT @num AS mynumber;

7. Highlight the written T-SQL code and click Execute.

8. In the query pane, type the following T-SQL code after the previous one:

DECLARE
@num1 int,
@num2 int;
SET @num1 = 4;
SET @num2 = 6;
SELECT @num1 + @num2 AS totalnum;

9. Highlight the written T-SQL code and click Execute.

 Task 3: Set the Variable Value Using a SELECT Statement
1. In the query pane, type the following T-SQL code after the Task 2 description:

DECLARE @empname nvarchar(30);
SET @empname = (SELECT firstname + N' ' + lastname FROM HR.Employees WHERE empid =
1);
SELECT @empname AS employee;

2. Highlight the written T-SQL code and click Execute.

3. Observe the result. What would happen if the SELECT statement was returning more than one row?
You would get an error because the SET statement requires you to use a scalar subquery to pull data
from a table. Remember that a scalar subquery fails at runtime if it returns more than one value.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-2 Querying Data with Transact-SQL

 Task 4: Use a Variable in the WHERE Clause
1. In the query pane, type the following T-SQL code after the Task 3 description:

DECLARE
@empname nvarchar(30),
@empid int;
SET @empid = 5;
SET @empname = (SELECT firstname + N' ' + lastname FROM HR.Employees WHERE empid =
@empid);
SELECT @empname AS employee;

2. Highlight the written T-SQL code and click Execute.

3. Observe and compare the results that you achieved with the desired results shown in the file
D:\Labfiles\Lab16\Solution\55 - Lab Exercise 1 - Task 3 Result.txt.

4. Change the @empid variable’s value from 5 to 2 and execute the modified T-SQL code to observe
the changes.

 Task 5: Use Variables with Batches
1. Highlight the T-SQL code in Task 3. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the Task 4 description. On the toolbar, click Edit and then
Paste.

3. In the code you just copied, add the batch delimiter GO before this statement:

SELECT @empname AS employee;

4. Make sure your T-SQL code looks like this:

DECLARE
@empname nvarchar(30),
@empid int;
SET @empid = 5;
SET @empname = (SELECT firstname + N' ' + lastname FROM HR.Employees WHERE empid =
@empid)
GO
SELECT @empname AS employee;

5. Highlight the written T-SQL code and click Execute.

6. Observe the error:

Must declare the scalar variable "@empname".

Can you explain why the batch delimiter caused an error? Variables are local to the batch in which
they are defined. If you try to refer to a variable that was defined in another batch, you get an error
saying that the variable was not defined. Also, keep in mind that GO is a client command, not a server
T-SQL command.

Results: After this exercise, you should know how to declare and use variables in T-SQL code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-3

Exercise 2: Using Control-of-Flow Elements

 Task 1: Write Basic Conditional Logic
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following T-SQL code after the Task 1 description:

DECLARE
@i int = 8,
@result nvarchar(20);
IF @i < 5
SET @result = N'Less than 5'
ELSE IF @i <= 10
SET @result = N'Between 5 and 10'
ELSE if @i > 10
SET @result = N'More than 10'
ELSE
SET @result = N'Unknown';
SELECT @result AS result;

4. Highlight the written T-SQL code and click Execute.

5. In the query pane, type the following T-SQL code:

DECLARE
@i int = 8,
@result nvarchar(20);
SET @result =
CASE
WHEN @i < 5 THEN
N'Less than 5'
WHEN @i <= 10 THEN
N'Between 5 and 10'
WHEN @i > 10 THEN
N'More than 10'
ELSE
N'Unknown'
END;
SELECT @result AS result;

This code uses a CASE expression and only one SET expression to get the same result as the previous
T-SQL code. Remember to use a CASE expression when it is a matter of returning an expression.
However, if you need to execute multiple statements, you cannot replace IF with CASE.

6. Highlight the written T-SQL code and click Execute.

 Task 2: Check the Employee Birthdate
1. In the query pane, type the following T-SQL code after the Task 2 description:

DECLARE
@birthdate date,
@cmpdate date;
SET @birthdate = (SELECT birthdate FROM HR.Employees WHERE empid = 5);
SET @cmpdate = '19700101';
IF @birthdate < @cmpdate
PRINT 'The person selected was born before January 1, 1970'
ELSE
PRINT 'The person selected was born on or after January 1, 1970';

2. Highlight the written T-SQL code and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-4 Querying Data with Transact-SQL

 Task 3: Create and Execute a Stored Procedure
1. Highlight the following T-SQL code under the Task 3 description:

CREATE PROCEDURE Sales.CheckPersonBirthDate
@empid int,
@cmpdate date
AS
DECLARE
@birthdate date;
SET @birthdate = (SELECT birthdate FROM HR.Employees WHERE empid = @empid);
IF @birthdate < @cmpdate
PRINT 'The person selected was born before ' + FORMAT(@cmpdate, 'MMMM d, yyyy', 'en-
US');
ELSE
PRINT 'The person selected was born on or after ' + FORMAT(@cmpdate, 'MMMM d, yyyy',
'en-US');

2. Click Execute. You have created a stored procedure named Sales.CheckPersonBirthDate. It has two
parameters: @empid, which you use to specify an employee ID, and @cmpdate, which you use as a
comparison date.

3. In the query pane, type the following T-SQL code after the provided T-SQL code:

EXECUTE Sales.CheckPersonBirthDate @empid = 3, @cmpdate = '19900101';

4. Highlight the written T-SQL code and click Execute.

 Task 4: Execute a Loop Using the WHILE Statement
1. In the query pane, type the following T-SQL code after the Task 4 description:

DECLARE @i int = 1;
WHILE @i <= 10
BEGIN
PRINT @i;
SET @i = @i + 1;
END;

2. Highlight the written T-SQL code and click Execute.

 Task 5: Remove the Stored Procedure
1. Highlight the following T-SQL code under the Task 5 description:

DROP PROCEDURE Sales.CheckPersonBirthDate;

2. Click Execute.

Results: After this exercise, you should know how to control the flow of the elements inside the T-SQL
code.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-5

Exercise 3: Using Variables in a Dynamic SQL Statement

 Task 1: Write a Dynamic SQL Statement That Does Not Use a Parameter
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following T-SQL code after the Task 1 description:

DECLARE @SQLstr nvarchar(200);
SET @SQLstr = N'SELECT empid, firstname, lastname FROM HR.Employees';
EXECUTE sys.sp_executesql @statement = @SQLstr;

4. Highlight the written T-SQL code and click Execute.

 Task 2: Write a Dynamic SQL Statement That Uses a Parameter
1. Highlight the T-SQL code in Task 1. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the Task 2 description. On the toolbar, click Edit and then
Paste.

3. Modify the T-SQL code to look like this:

DECLARE
@SQLstr nvarchar(200),
@SQLparam nvarchar(100);
SET @SQLstr = N'SELECT empid, firstname, lastname FROM HR.Employees WHERE empid =
@empid';
SET @SQLparam = N'@empid int';
EXECUTE sys.sp_executesql @statement = @SQLstr, @params = @SQLparam, @empid = 5;

4. Highlight the written T-SQL code and click Execute.

Results: After this exercise, you should have a basic knowledge of generating and invoking dynamic SQL
statements.

Exercise 4: Using Synonyms

 Task 1: Create and Use a Synonym for a Table
1. In Solution Explorer, double-click the query 81 - Lab Exercise 4.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following T-SQL code after the Task 1 description:

CREATE SYNONYM dbo.Person
FOR AdventureWorks.Person.Person;

4. Highlight the written T-SQL code and click Execute. You have created a synonym named dbo.Person.

5. In the query pane, type the following SELECT statement after the previous T-SQL code:

SELECT FirstName, LastName
FROM dbo.Person;

6. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L16-6 Querying Data with Transact-SQL

 Task 2: Drop the Synonym
1. Highlight the following T-SQL code under the Task 2 description:

DROP SYNONYM dbo.Person;

2. Click Execute.

Results: After this exercise, you should know how to create and use a synonym.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L17-1

Module 17: Implementing Error Handling

Lab: Implementing Error Handling
Exercise 1: Redirecting Errors with TRY/CATCH

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab17\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a Basic TRY/CATCH Construct
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab17\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries and then double-click the 51 - Lab Exercise 1.sql.

5. In the query window, highlight the statement USE TSQL; and click Execute.

6. Highlight the following SELECT statement under the Task 1 description:

SELECT CAST(N'Some text' AS int);

7. Click Execute. Notice the conversion error.

8. Write a TRY/CATCH construct. Your T-SQL code should look like this:

BEGIN TRY
SELECT CAST(N'Some text' AS int);
END TRY
BEGIN CATCH
PRINT 'Error';
END CATCH;

9. Highlight the written T-SQL code and click Execute.

 Task 3: Display an Error Number and an Error Message
1. Highlight the following T-SQL code under the Task 2 description:

DECLARE @num varchar(20) = '0';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
END CATCH;

2. Click Execute. Notice that you did not get an error because you used the TRY/CATCH construct.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L17-2 Querying Data with Transact-SQL

3. Modify the T-SQL code by adding two PRINT statements. The T-SQL code should look like this:

DECLARE @num varchar(20) = '0';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
PRINT 'Error Number: ' + CAST(ERROR_NUMBER() AS varchar(10));
PRINT 'Error Message: ' + ERROR_MESSAGE();
END CATCH;

4. Highlight the T-SQL code and click Execute.

5. Change the value of the @num variable to look like this:

DECLARE @num varchar(20) = 'A';

6. Highlight the T-SQL code and click Execute. Notice that you get a different error number and
message.

7. Change the value of the @num variable to look like this:

DECLARE @num varchar(20) = ' 1000000000';

8. Highlight the T-SQL code and click Execute. Notice that you get a different error number and
message.

 Task 4: Add Conditional Logic to a CATCH Block
1. Modify the T-SQL code in Task 3 to look like this:

DECLARE @num varchar(20) = 'A';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
IF ERROR_NUMBER() IN (245, 8114)
BEGIN
PRINT 'Handling conversion error...'
END
ELSE
BEGIN
PRINT 'Handling non-conversion error...';
END;
PRINT 'Error Number: ' + CAST(ERROR_NUMBER() AS varchar(10));
PRINT 'Error Message: ' + ERROR_MESSAGE();
END CATCH;

2. Highlight the written query and click Execute.

3. Change the value of the @num variable to look like this:

DECLARE @num varchar(20) = '0';

4. Highlight the T-SQL code and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L17-3

 Task 5: Execute a Stored Procedure in the CATCH Block
1. Highlight the following T-SQL code under the Task 4 description:

CREATE PROCEDURE dbo.GetErrorInfo AS
PRINT 'Error Number: ' + CAST(ERROR_NUMBER() AS varchar(10));
PRINT 'Error Message: ' + ERROR_MESSAGE();
PRINT 'Error Severity: ' + CAST(ERROR_SEVERITY() AS varchar(10));
PRINT 'Error State: ' + CAST(ERROR_STATE() AS varchar(10));
 PRINT 'Error Line: ' + CAST(ERROR_LINE() AS varchar(10));
 PRINT 'Error Proc: ' + COALESCE(ERROR_PROCEDURE(), 'Not within procedure');

2. Click Execute. You have created a stored procedure named dbo.GetErrorInfo.

3. Modify the T-SQL code under TRY/CATCH to look like this:

DECLARE @num varchar(20) = '0';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
EXECUTE dbo.GetErrorInfo;
END CATCH;

4. Highlight the written T-SQL code and click Execute.

Results: After this exercise, you should be able to capture and handle errors using a TRY/CATCH
construct.

Exercise 2: Using THROW to Pass an Error Message Back to a Client
 Task 1: Rethrow the Existing Error Back to a Client
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. Modify the T-SQL code under the Task 1 description to look like this:

DECLARE @num varchar(20) = '0';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
EXECUTE dbo.GetErrorInfo; THROW;
END CATCH;

4. Highlight the written T-SQL code and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L17-4 Querying Data with Transact-SQL

 Task 2: Add an Error Handling Routine
1. Modify the T-SQL code under the Task 2 description to look like this:

DECLARE @num varchar(20) = 'A';
BEGIN TRY
PRINT 5. / CAST(@num AS numeric(10,4));
END TRY
BEGIN CATCH
EXECUTE dbo.GetErrorInfo;
IF ERROR_NUMBER() = 8134
BEGIN
PRINT 'Handling devision by zero...';
END
ELSE
BEGIN
PRINT 'Throwing original error';
THROW;
END;
END CATCH;

2. Highlight the written T-SQL code and click Execute.

 Task 3: Add a Different Error Handling Routine
1. Find the following T-SQL code under the Task 3 description:

DECLARE @msg AS varchar(2048);
SET @msg = 'You are doing the exercise for Module 17 on ' + FORMAT(CURRENT_TIMESTAMP,
'MMMM d, yyyy', 'en-US') + '. It''s not an error but it means that you are near the
final module!';

2. After the provided code, add a THROW statement. The completed T-SQL code should look like this:

DECLARE @msg AS varchar(2048);
SET @msg = 'You are doing the exercise for Module 17 on ' + FORMAT(CURRENT_TIMESTAMP,
'MMMM d, yyyy', 'en-US') + '. It''s not an error but it means that you are near the
final module!';
THROW 50001, @msg, 1;

3. Highlight the written T-SQL code and click Execute.

 Task 4: Remove the Stored Procedure
 Highlight the provided T-SQL statement under the Task 4 description and click Execute.

Results: After this exercise, you should know how to throw an error to pass messages back to a client.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L18-1

Module 18: Implementing Transactions

Lab: Implementing Transactions
Exercise 1: Controlling Transactions with BEGIN, COMMIT, and ROLLBACK

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761B-MIA-DC and 20761B-MIA-SQL virtual machines are both running, and then

log on to 20761B-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab18\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Commit a Transaction
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, click Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab18\Starter\Project\Project.ssmssln.

4. In Solution Explorer, double-click the query 51 - Lab Exercise 1.sql.

5. In the query window, highlight the statement USE TSQL; and click Execute.

6. Modify the T-SQL code under the Task 1 description by adding the BEGIN TRAN and COMMIT TRAN
statements. Your T-SQL code should look like this:

BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'20110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);
COMMIT TRAN;

7. Highlight the written T-SQL code and click Execute.

8. In the query pane, type the following query after the previous T-SQL code:

SELECT empid, lastname, firstname
FROM HR.Employees
ORDER BY empid DESC;

9. Highlight the written query and click Execute.

 Task 3: Delete the Previously Inserted Rows from the HR.Employees Table
1. Highlight the following T-SQL code under the Task 2 description:

DELETE HR.Employees
WHERE empid IN (10, 11);
DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

2. Click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L18-2 Querying Data with Transact-SQL

 Task 4: Open a Transaction and Use the ROLLBACK Statement
1. Modify the T-SQL code under the Task 3 description by adding the BEGIN TRAN statement. Your T-

SQL code should look like this:

BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'20110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);

2. Highlight the written T-SQL code and click Execute.

3. In the query pane, type the following query after the previous T-SQL code:

SELECT empid, lastname, firstname
FROM HR.Employees
ORDER BY empid DESC;

4. Highlight the written query and click Execute.

5. In the query pane, type the following statement after the SELECT statement:

ROLLBACK TRAN;

6. Highlight the written statement and click Execute.

7. Again, highlight the SELECT statement shown in Step 3 and click Execute.

 Task 5: Clear the Modifications Against the HR.Employees Table
1. Highlight the following T-SQL code after the Task 4 description:

DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

2. Click Execute.

Results: After this exercise, you should be able to control a transaction using the BEGIN TRAN, COMMIT,
and ROLLBACK statements.

Exercise 2: Adding Error Handling to a CATCH Block

 Task 1: Observe the Provided T-SQL Code
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. In the query window, highlight the statement USE TSQL; and click Execute.

3. Highlight only the following SELECT statement under the Task 1 description:

SELECT empid, lastname, firstname
FROM HR.Employees
ORDER BY empid DESC;

4. Click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L18-3

5. In the provided T-SQL code, highlight the code between the BEGIN TRAN and COMMIT TRAN
statements. Your highlighted T-SQL code should look like this:

BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'10110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);
COMMIT TRAN;

6. Click Execute. Notice there is a conversion error in the second INSERT statement.

7. Again, highlight the SELECT statement shown in Step 3 and click Execute.

 Task 2: Delete the Previously Inserted Row in the HR.Employees Table
1. Highlight the following T-SQL code under the Task 2 description:

DELETE HR.Employees
WHERE empid IN (10, 11);
DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

2. Click Execute.

 Task 3: Abort Both INSERT Statements If an Error Occurs
1. Modify the T-SQL code under the Task 3 description to look like this:

BEGIN TRY
BEGIN TRAN;
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Johnson', N'Test 1', N'Sales Manager', N'Mr.', '19700101', '20110101',
N'Some Address 18', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386) 113322', 2);
INSERT INTO HR.Employees (lastname, firstname, title, titleofcourtesy, birthdate,
hiredate, address, city, region, postalcode, country, phone, mgrid)
VALUES (N'Robertson', N'Test 2', N'Sales Representative', N'Mr.', '19850101',
'10110601', N'Some Address 22', N'Ljubljana', NULL, N'1000', N'Slovenia', N'(386)
553344', 10);
PRINT 'Commit the transaction...';
COMMIT TRAN;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
PRINT 'Rollback the transaction...';
ROLLBACK TRAN;
END
END CATCH;

2. Highlight the modified T-SQL code and click Execute.

3. In the query pane, type the following query after the modified T-SQL code:

SELECT empid, lastname, firstname
FROM HR.Employees ORDER BY empid DESC;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L18-4 Querying Data with Transact-SQL

 Task 4: Clear the Modifications Against the HR.Employees Table
1. Highlight the following T-SQL code under the Task 4 description:

DBCC CHECKIDENT ('HR.Employees', RESEED, 9);

2. Click Execute.

Results: After this exercise, you should have a basic understanding of how to control a transaction inside
a TRY/CATCH block to efficiently handle possible errors.

	20761B
	20761B00
	20761B01
	20761B02
	20761B03
	20761B04
	20761B05
	20761B06
	20761B07
	20761B08
	20761B09
	20761B10
	20761B11
	20761B12
	20761B13
	20761B14
	20761B15
	20761B16
	20761B17
	20761B18
	20761B19
	20761B20
	20761B21
	20761B22
	20761B23
	20761B24
	20761B25
	20761B26
	20761B27
	20761B28
	20761B29
	20761B30
	20761B31
	20761B32
	20761B33
	20761B34
	20761B35
	20761B36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

